logo CRAS
Comptes Rendus. Mathématique

Géométrie différentielle, Systèmes dynamiques
Deformation of singular foliations, 1: Local deformation cohomology
Comptes Rendus. Mathématique, Tome 358 (2020) no. 3, pp. 273-283.

In this paper we introduce the notion of deformation cohomology for singular foliations and related objects (namely integrable differential forms and Nambu structures), and study it in the local case, i.e., in the neighborhood of a point.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : https://doi.org/10.5802/crmath.26
@article{CRMATH_2020__358_3_273_0,
     author = {Philippe Monnier and Tien Zung Nguyen},
     title = {Deformation of singular foliations, 1: {Local} deformation cohomology},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {273--283},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {358},
     number = {3},
     year = {2020},
     doi = {10.5802/crmath.26},
     language = {en},
}
Philippe Monnier; Tien Zung Nguyen. Deformation of singular foliations, 1: Local deformation cohomology. Comptes Rendus. Mathématique, Tome 358 (2020) no. 3, pp. 273-283. doi : 10.5802/crmath.26. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.26/

[1] Iakovos Androulidakis; Georges Skandalis The holonomy groupoid of a singular foliation, J. Reine Angew. Math., Volume 626 (2009), pp. 1-37 | Article | MR 2492988 | Zbl 1161.53020

[2] Iakovos Androulidakis; Marco Zambon Stefan–Sussmann singular foliations, singular subalgebroids and their associated sheaves, Int. J. Geom. Methods Mod. Phys., Volume 13 (2016), 1641001, 17 pages | MR 3556105 | Zbl 1352.53021

[3] Vladimir I. Arnold; Sabir M. Gusein-Zade; Alexander N. Varchenko Singularities of differentiable maps. Volume I: The classification of critical points, caustics and wave fronts, Monographs in Mathematics, 82, Birkhäuser, 1985 | Zbl 0554.58001

[4] Jean-Paul Dufour; Nguyen Tien Zung Linearization of Nambu structures, Compos. Math., Volume 117 (1999) no. 1, p. 77--98 | MR 1693003 | Zbl 0969.53047

[5] Jean-Paul Dufour; Nguyen Tien Zung Poisson structures and their normal forms, Progress in Mathematics, 242, Birkhäuser, 2005 | MR 2178041 | Zbl 1082.53078

[6] James L. Heitsch A cohomology for foliated manifolds, Comment. Math. Helv., Volume 50 (1975), pp. 197-218 | Article | MR 372877 | Zbl 0311.57014

[7] Robert Hermann On the accessibility problem in control theory, International symposium on nonlinear differential equations and nonlinear mechanics, Academic Press Inc., 1963, pp. 327-332 | Zbl 0142.36102

[8] Bernard Malgrange Frobenius avec singularités. II. Le cas général, Invent. Math., Volume 39 (1977) no. 1, pp. 67-89 | Article | Zbl 0375.32012

[9] Truong Hong Minh; Nguyen Tien Zung Commuting Foliations, Regul. Chaotic Dyn., Volume 18 (2013) no. 6, pp. 608-622 | MR 3146582 | Zbl 1287.53022

[10] Philippe Monnier Computations of Nambu-Poisson cohomologies, Int. J. Math., Volume 26 (2001) no. 2, pp. 65-81 | Article | MR 1836784 | Zbl 1103.53050

[11] Philippe Monnier Poisson cohomology in dimension two, Isr. J. Math., Volume 129 (2002), pp. 189-207 | Article | MR 1910942 | Zbl 1077.17018

[12] Georges Reeb Sur les espaces fibrés et les variétés feuilletées. II: Sur certaines propriétés topologiques des variétés feuilletées (Actualités scientifiques et industrielles), Volume 1183, Hermann & Cie, 1952, p. 5-89, 155–156 | Zbl 0049.12602

[13] Peter Stefan Accessible sets, orbits, and foliations with singularities, Proc. Lond. Math. Soc., Volume 29 (1974), pp. 699-713 | Article | MR 362395 | Zbl 0342.57015

[14] Hector J. Sussmann Orbits of families of vector fields and integrability of distributions, Trans. Am. Math. Soc., Volume 180 (1973), pp. 171-188 | Article | MR 321133 | Zbl 0274.58002

[15] William P. Thurston A generalization of the Reeb stability theorem, Topology, Volume 13 (1974), pp. 347-352 | Article | MR 356087 | Zbl 03005.57025

[16] Nguyen Tien Zung New results on the linearization of Nambu structures, J. Math. Pures Appl., Volume 99 (2013) no. 2, pp. 211-218 | Article | MR 3007845 | Zbl 1261.37021