Comptes Rendus
Analyse harmonique
Weak-type endpoint bounds for Bochner–Riesz means for the Hermite operator
Comptes Rendus. Mathématique, Volume 360 (2022), pp. 111-126.

We obtain weak-type (p,p) endpoint bounds for Bochner–Riesz means for the Hermite operator H=-Δ+|x| 2 in n ,n2 and for other related operators, for 1p2n/(n+2), extending earlier results of Thangavelu and of Karadzhov.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.265
Classification : 42B15, 42B08, 42C10

Peng Chen 1, 2 ; Ji Li 3 ; Lesley Ward 2 ; Lixin Yan 1

1 Department of Mathematics, Sun Yat-sen University, Guangzhou, 510275, P.R. China
2 School of Information Technology and Mathematical Sciences, University of South Australia, Mawson Lakes SA 5095, Australia
3 Department of Mathematics, Macquarie University, NSW 2109, Australia
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2022__360_G2_111_0,
     author = {Peng Chen and Ji Li and Lesley Ward and Lixin Yan},
     title = {Weak-type endpoint bounds for {Bochner{\textendash}Riesz} means for the {Hermite} operator},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {111--126},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {360},
     year = {2022},
     doi = {10.5802/crmath.265},
     language = {en},
}
TY  - JOUR
AU  - Peng Chen
AU  - Ji Li
AU  - Lesley Ward
AU  - Lixin Yan
TI  - Weak-type endpoint bounds for Bochner–Riesz means for the Hermite operator
JO  - Comptes Rendus. Mathématique
PY  - 2022
SP  - 111
EP  - 126
VL  - 360
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.265
LA  - en
ID  - CRMATH_2022__360_G2_111_0
ER  - 
%0 Journal Article
%A Peng Chen
%A Ji Li
%A Lesley Ward
%A Lixin Yan
%T Weak-type endpoint bounds for Bochner–Riesz means for the Hermite operator
%J Comptes Rendus. Mathématique
%D 2022
%P 111-126
%V 360
%I Académie des sciences, Paris
%R 10.5802/crmath.265
%G en
%F CRMATH_2022__360_G2_111_0
Peng Chen; Ji Li; Lesley Ward; Lixin Yan. Weak-type endpoint bounds for Bochner–Riesz means for the Hermite operator. Comptes Rendus. Mathématique, Volume 360 (2022), pp. 111-126. doi : 10.5802/crmath.265. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.265/

[1] Jean Bourgain; Larry Guth Bounds on oscillatory integral operators based on multilinear estimates, Geom. Funct. Anal., Volume 21 (2011) no. 6, pp. 1239-1295 | DOI | MR | Zbl

[2] Lennart Carleson; Per Sjölin Oscillatory integrals and a multiplier problem for the disc, Stud. Math., Volume 44 (1972), pp. 287-299 | DOI | MR | Zbl

[3] Jeff Cheeger; Mikhail Gromov; Michael Taylor Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds, J. Differ. Geom., Volume 17 (1982) no. 1, pp. 15-53 | MR | Zbl

[4] Peng Chen; Sanghyuk Lee; Adam Sikora; Lixin Yan Bounds on the maximal Bochner–Riesz means for elliptic operators (2018) (to appear in Transactions of the American Mathematical Society, https://arxiv.org/abs/1803.03369)

[5] Peng Chen; El Maati Ouhabaz; Adam Sikora; Lixin Yan Restriction estimates, sharp spectral multipliers and endpoint estimates for Bochner–Riesz means, J. Anal. Math., Volume 129 (2016), pp. 219-283 | DOI | MR | Zbl

[6] Michael Christ Weak type endpoint bounds for Bochner–Riesz multipliers, Rev. Mat. Iberoam., Volume 3 (1987) no. 1, pp. 25-31 | DOI | MR | Zbl

[7] Michael Christ Weak type (1,1) bounds for rough operators, Ann. Math., Volume 128 (1988) no. 1, pp. 19-42 | DOI | MR | Zbl

[8] Michael Christ; Christopher D. Sogge The weak type L 1 convergence of eigenfunction expansions for pseudo-differential operators, Invent. Math., Volume 94 (1988) no. 2, pp. 421-453 | DOI | Zbl

[9] Thierry Coulhon; Adam Sikora Gaussian heat kernel upper bounds via the Phragmén–Lindelöf theorem, Proc. Lond. Math. Soc., Volume 96 (2008) no. 2, pp. 507-544 | DOI | Zbl

[10] Xuan Thinh Duong; El Maati Ouhabaz; Adam Sikora Plancherel-type estimates and sharp spectral multipliers, J. Funct. Anal., Volume 196 (2002) no. 2, pp. 443-485 | DOI | MR | Zbl

[11] Charles Fefferman Inequalities for strongly singular convolution operators, Acta Math., Volume 124 (1970), pp. 9-36 | DOI | MR | Zbl

[12] Charles Fefferman A note on spherical summation multipliers, Isr. J. Math., Volume 15 (1973), pp. 44-52 | DOI | MR | Zbl

[13] Loukas Grafakos Classical Fourier Analysis, Graduate Texts in Mathematics, 249, Springer, 2014 | Zbl

[14] Carl S. Herz On the mean inversion of Fourier and Hankel transforms, Proc. Natl. Acad. Sci. USA, Volume 40 (1954), pp. 996-999 | DOI | MR | Zbl

[15] Georgi E. Karadzhov Riesz summability of multiple Hermite series in L p spaces, C. R. Acad. Bulg. Sci., Volume 47 (1994) no. 2, pp. 5-8 | MR | Zbl

[16] Carlos E. Kenig; Robert J. Stanton; Peter A. Tomas Divergence of eigenfunction expansions, J. Funct. Anal., Volume 46 (1982), pp. 28-44 | DOI | MR | Zbl

[17] Herbert Koch; Daniel Tataru L p eigenfunction bounds for the Hermite operator, Duke Math. J., Volume 128 (2005) no. 2, pp. 369-392 | MR | Zbl

[18] Sanghyuk Lee Improved bounds for Bochner-Riesz and maximal Bochner–Riesz operators, Duke Math. J., Volume 122 (2004) no. 1, pp. 205-232 | MR | Zbl

[19] Boris S. Mitjagin Divergenz von Spektralentwicklungen in L P -Räumen, Linear operators and approximation, II (Proc. Conf., Oberwolfach Math. Res. Inst., Oberwolfach, 1974) (International Series of Numerical Mathematics), Volume 25, Birkhäuser, 1974, pp. 521-530 | MR | Zbl

[20] Andreas Seeger Endpoint estimates for multiplier transformations on compact manifolds, Indiana Univ. Math. J., Volume 40 (1991) no. 2, pp. 471-533 | DOI | MR | Zbl

[21] Andreas Seeger Endpoint inequalities for Bochner–Riesz multipliers in the plane, Pac. J. Math., Volume 174 (1996) no. 2, pp. 543-553 | DOI | MR | Zbl

[22] Adam Sikora Riesz transform, Gaussian bounds and the method of wave equation, Math. Z., Volume 247 (2004) no. 3, pp. 643-662 | MR | Zbl

[23] Christopher D. Sogge On the convergence of Riesz means on compact manifolds, Ann. Math., Volume 126 (1987) no. 2, pp. 439-447 | DOI | MR | Zbl

[24] Christopher D. Sogge Concerning the L p norm of spectral clusters for second order elliptic operators on compact manifolds, J. Funct. Anal., Volume 77 (1988) no. 1, pp. 123-134 | DOI | MR | Zbl

[25] Elias M. Stein Harmonic analysis: Real variable methods, orthogonality and oscillatory integrals, Princeton Mathematical Series, 43, Princeton University Press, 1993 (with the assistance of Timothy S. Murphy) | Zbl

[26] Elias M. Stein; Guido Weiss Introduction to Fourier Analysis on Euclidean spaces, Princeton Mathematical Series, 32, Princeton University Press, 1971 | Zbl

[27] Terence Tao Weak-type endpoint bounds for Riesz means, Proc. Am. Math. Soc., Volume 124 (1996) no. 9, pp. 2797-2805 | MR | Zbl

[28] Terence Tao The weak-type endpoint Bochner–Riesz conjecture and related topics, Indiana Univ. Math. J., Volume 47 (1998) no. 3, pp. 1097-1124 | MR | Zbl

[29] Terence Tao Some recent progress on the restriction conjecture, Fourier analysis and convexity (Luca Brandolini, ed.) (Applied and Numerical Harmonic Analysis), Birkhäuser, 2004, pp. 217-243 | Zbl

[30] Terence Tao; Ana Vargas; Luis Vega A bilinear approach to the restriction and Kakeya conjectures, J. Am. Math. Soc., Volume 11 (1998) no. 4, pp. 967-1000 | MR | Zbl

[31] Sundaram Thangavelu Summability of Hermite expansions. I, Trans. Am. Math. Soc., Volume 314 (1989) no. 1, pp. 119-142 | DOI | MR | Zbl

[32] Sundaram Thangavelu Summability of Hermite expansions. II, Trans. Am. Math. Soc., Volume 314 (1989) no. 1, pp. 143-170 | DOI | MR | Zbl

[33] Sundaram Thangavelu Lectures on Hermite and Laguerre expansions, Mathematical Notes (Princeton), 42, Princeton University Press, 1993 (with a preface by Robert S. Strichartz) | DOI | Zbl

[34] Sundaram Thangavelu Hermite and special Hermite expansions revisited, Duke Math. J., Volume 94 (1998) no. 2, pp. 257-278 | MR | Zbl

Cité par Sources :

Commentaires - Politique