For any complete -algebraic variety Y and its underlying compact -analytic space , it follows from the well known GAGA principle that the algebraic Picard group and the analytic Picard group are isomorphic. Our main purpose here is to provide a simple proof of an analogous situation for non complete -algebraic varieties, namely -algebraic affine hypersurfaces with at most isolated singularities.
Revised:
Accepted:
Published online:
Vo Van Tan 1
@article{CRMATH_2022__360_G2_103_0, author = {Vo Van Tan}, title = {On the {GAGA} principle for algebraic affine hypersurfaces}, journal = {Comptes Rendus. Math\'ematique}, pages = {103--110}, publisher = {Acad\'emie des sciences, Paris}, volume = {360}, year = {2022}, doi = {10.5802/crmath.254}, language = {en}, }
Vo Van Tan. On the GAGA principle for algebraic affine hypersurfaces. Comptes Rendus. Mathématique, Volume 360 (2022), pp. 103-110. doi : 10.5802/crmath.254. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.254/
[1] Deformations of singularities and the homology of intersection spaces, J. Topol. Anal., Volume 4 (2012) no. 4, p. 413--448 | DOI | MR | Zbl
[2] On the homology and cohomology of complete intersection with isolated singularities, Compos. Math., Volume 58 (1986), pp. 321-339 | Numdam | MR | Zbl
[3] Singularities and topology of hypersurfaces, Universitext, Springer, 1992 | DOI | Zbl
[4] On Picard groups of algebraic fibre spaces, J. Pure Appl. Algebra, Volume 3 (1973), pp. 269-280 | DOI | MR | Zbl
[5] Lectures on algebraic topology, W. A. Benjamin, Inc., 1972
[6] Cohomologie locale des faisceaux cohérents et Théorèmes de Lefschetz locaux et globaux. (SGA 2). Augmenté d’un exposé par Michèle Raynaud. Séminaire de géométrie algébrique du Bois-Marie 1962, Advanced Studies in Pure Mathematics (Amsterdam), 2, North-Holland; Masson, 1968 | Zbl
[7] Revêtements étales et groupe fondamental (SGA I) (Alexander Grothendieck, ed.), Lecture Notes in Mathematics, 224, Springer, 1971 | DOI | Zbl
[8] On the Picard group for non-complete algebraic varieties, Franco-Japanese singularities. Proceedings of the 2nd Franco-Japanese singularity conference, CIRM, Marseille-Luminy, France, September 9–13, 2002 (Séminaires et Congrès), Volume 10, Société Mathématique de France, 2005, pp. 71-86 | MR | Zbl
[9] Ample subvarieties of Algebraic varieties, Lecture Notes in Mathematics, 156, Springer, 1970 | DOI | Zbl
[10] Algebraic Geometry, Graduate Texts in Mathematics, 52, Springer, 1977 | DOI | Zbl
[11] On the homotopy groups of an affine algebraic hypersurface, Ann. Math., Volume 84 (1966), pp. 197-216 | DOI | MR | Zbl
[12] Topology of -regular spaces and algebraic sets, Manifolds—Tokyo 1973 (Proc. Internat. Conf. on Manifolds and Related Topics in Topology) (1975), pp. 153-159 | MR | Zbl
[13] Partial Poincare duality for k-regular spaces and complex algebraic sets, Topology, Volume 16 (1977) no. 1, pp. 33-50 | DOI | MR | Zbl
[14] The Picard sequence of a fibration, Proc. Am. Math. Soc., Volume 53 (1975), pp. 37-40 | MR | Zbl
[15] On the topology of isolated singularities in analytic spaces, Progress in Mathematics, 241, Birkhäuser, 2006 | Zbl
[16] Algebraic varieties bihomorphic to , Tôhoku Math. J., Volume 30 (1978), pp. 455-461 | Zbl
[17] On the parallelism between algebraic and analytic Picard groups of algebraic affine hypersurfaces (to appear) | Numdam
[18] Théorie de Hodge et géométrie algébrique complexe, Contributions in Mathematical and Computational Sciences, 10, Société Mathématique de France, 2002 | Zbl
Cited by Sources:
Comments - Policy