In this paper, we consider the following 1-Laplacian problem
where , is a periodic potential and is periodic and verifies the super-primary condition at infinity. By the Nehari type manifold method, the concentration compactness principle and some analysis techniques, we show the 1-Laplacian equation has a ground state solution.
Accepté le :
Accepté après révision le :
Publié le :
Shi-Ying Wang 1 ; Peng Chen 1 ; Lin Li 2
@article{CRMATH_2022__360_G4_297_0, author = {Shi-Ying Wang and Peng Chen and Lin Li}, title = {Ground state solution for a non-autonomous {1-Laplacian} problem involving periodic potential in $\protect \mathbb{R}^N$}, journal = {Comptes Rendus. Math\'ematique}, pages = {297--304}, publisher = {Acad\'emie des sciences, Paris}, volume = {360}, year = {2022}, doi = {10.5802/crmath.276}, language = {en}, }
TY - JOUR AU - Shi-Ying Wang AU - Peng Chen AU - Lin Li TI - Ground state solution for a non-autonomous 1-Laplacian problem involving periodic potential in $\protect \mathbb{R}^N$ JO - Comptes Rendus. Mathématique PY - 2022 SP - 297 EP - 304 VL - 360 PB - Académie des sciences, Paris DO - 10.5802/crmath.276 LA - en ID - CRMATH_2022__360_G4_297_0 ER -
%0 Journal Article %A Shi-Ying Wang %A Peng Chen %A Lin Li %T Ground state solution for a non-autonomous 1-Laplacian problem involving periodic potential in $\protect \mathbb{R}^N$ %J Comptes Rendus. Mathématique %D 2022 %P 297-304 %V 360 %I Académie des sciences, Paris %R 10.5802/crmath.276 %G en %F CRMATH_2022__360_G4_297_0
Shi-Ying Wang; Peng Chen; Lin Li. Ground state solution for a non-autonomous 1-Laplacian problem involving periodic potential in $\protect \mathbb{R}^N$. Comptes Rendus. Mathématique, Volume 360 (2022), pp. 297-304. doi : 10.5802/crmath.276. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.276/
[1] A Berestycki–Lions type result for a class of problems involving the 1-Laplacian operator, Commun. Contemp. Math. (2021), 2150022 | DOI
[2] Existence and profile of ground-state solutions to a 1-Laplacian problem in , Bull. Braz. Math. Soc. (N.S.), Volume 51 (2020) no. 3, pp. 863-886 | DOI | MR | Zbl
[3] The Euler equation for functionals with linear growth, Trans. Am. Math. Soc., Volume 290 (1985) no. 2, pp. 483-501 | DOI | MR | Zbl
[4] Variational analysis in Sobolev and BV spaces. Applications to PDEs and optimization, MOS-SIAM Series on Optimization, 17, Society for Industrial and Applied Mathematics; Mathematical Optimization Society, Philadelphia, PA, 2014 | DOI | MR | Zbl
[5] Existence and concentration of positive ground states for a 1-Laplacian problem in , Appl. Math. Lett., Volume 100 (2020), 106045 | DOI | MR | Zbl
[6] Existence of bounded variation solutions for a 1-Laplacian problem with vanishing potentials, J. Math. Anal. Appl., Volume 459 (2018) no. 2, pp. 861-878 | DOI | MR | Zbl
[7] Nehari method for locally Lipschitz functionals with examples in problems in the space of bounded variation functions, NoDEA, Nonlinear Differ. Equ. Appl., Volume 25 (2018) no. 5, 47 | DOI | MR | Zbl
[8] Strauss’ and Lions’ type results in with an application to an 1-Laplacian problem, Milan J. Math., Volume 86 (2018) no. 1, pp. 15-30 | DOI | MR | Zbl
[9] Ground states of nonlinear Schrödinger equations with potentials, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 23 (2006) no. 6, pp. 829-837 | DOI | Numdam | MR | Zbl
[10] The concentration-compactness principle in the calculus of variations. The locally compact case. I, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 1 (1984) no. 2, pp. 109-145 | DOI | MR | Zbl
[11] A Berestycki–Lions’ type result to a quasilinear elliptic problem involving the 1-Laplacian operator, J. Math. Anal. Appl., Volume 500 (2021) no. 1, 125074 | DOI | MR | Zbl
[12] Nonlinear total variation based noise removal algorithms, Physica D, Volume 60 (1992) no. 1-4, pp. 259-268 | DOI | MR | Zbl
[13] Existence of a radial solution to a 1-Laplacian problem in , Appl. Math. Lett., Volume 118 (2021), 107138 | DOI | MR | Zbl
Cité par Sources :
Commentaires - Politique