Comptes Rendus
Theorie des nombres
The number of unimodular roots of some reciprocal polynomials
[Sur le nombre de racines de module un de certains polynômes réciproques]
Comptes Rendus. Mathématique, Volume 358 (2020) no. 2, pp. 159-168.

Nous introduisons une suite P 2n de polynômes unitaires réciproques avec des coefficients entiers ayant les coefficients centraux fixes. Nous prouvons que le rapport entre le nombre de racines non unimodulaires de P 2n et son degré d a une limite lorsque d tend vers l’infini. Nous présentons un algorithme de calcul de la limite et une méthode numérique pour son approximation. Si P 2n est la somme d’un nombre fixe de monômes, nous déterminons les coefficients centraux de sorte que le rapport ait la limite minimale. Nous généralisons la limite du rapport pour les polynômes de plusieurs variables. Certains exemples suggèrent une conjecture pour les polynômes à deux variables qui est analogue à la formule limite de Boyd pour la mesure de Mahler.

We introduce a sequence P 2n of monic reciprocal polynomials with integer coefficients having the central coefficients fixed. We prove that the ratio between number of nonunimodular roots of P 2n and its degree d has a limit when d tends to infinity. We present an algorithm for calculation the limit and a numerical method for its approximation. If P 2n is the sum of a fixed number of monomials we determine the central coefficients such that the ratio has the minimal limit. We generalise the limit of the ratio for multivariate polynomials. Some examples suggest a theorem for polynomials in two variables which is analogous to Boyd’s limit formula for Mahler measure.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.28

Dragan Stankov 1

1 Katedra Matematike RGF-a, University of Belgrade, Belgrade, Đušina 7, Serbia
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2020__358_2_159_0,
     author = {Dragan Stankov},
     title = {The number of unimodular roots of some reciprocal polynomials},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {159--168},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {358},
     number = {2},
     year = {2020},
     doi = {10.5802/crmath.28},
     language = {en},
}
TY  - JOUR
AU  - Dragan Stankov
TI  - The number of unimodular roots of some reciprocal polynomials
JO  - Comptes Rendus. Mathématique
PY  - 2020
SP  - 159
EP  - 168
VL  - 358
IS  - 2
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.28
LA  - en
ID  - CRMATH_2020__358_2_159_0
ER  - 
%0 Journal Article
%A Dragan Stankov
%T The number of unimodular roots of some reciprocal polynomials
%J Comptes Rendus. Mathématique
%D 2020
%P 159-168
%V 358
%N 2
%I Académie des sciences, Paris
%R 10.5802/crmath.28
%G en
%F CRMATH_2020__358_2_159_0
Dragan Stankov. The number of unimodular roots of some reciprocal polynomials. Comptes Rendus. Mathématique, Volume 358 (2020) no. 2, pp. 159-168. doi : 10.5802/crmath.28. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.28/

[1] Peter B. Borwein; Stephen Choi; Ron Ferguson; Jonas Jankauskas On Littlewood polynomials with prescribed number of zeros inside the unit disk, Can. J. Math., Volume 67 (2015), pp. 507-526 | DOI | MR | Zbl

[2] Peter B. Borwein; Tamás Erdélyi; Ron Ferguson; Richard Lockhart On the zeros of cosine polynomials: solution to a problem of Littlewood, Ann. Math., Volume 167 (2008) no. 3, pp. 1109-1117 | DOI | MR | Zbl

[3] David W. Boyd Reciprocal polynomials having small Mahler measure, Math. Comput., Volume 35 (1980), pp. 1361-1377 | DOI | Zbl

[4] David W. Boyd Speculations concerning the range of Mahler’s measure, Can. Math. Bull., Volume 24 (1981), pp. 453-469 | DOI | MR | Zbl

[5] Paulius Drungilas Unimodular roots of reciprocal Littlewood polynomials, J. Korean Math. Soc., Volume 45 (2008) no. 3, pp. 835-840 | DOI | MR | Zbl

[6] Graham Everest; Thomas Ward Heights of Polynomials and Entropy in Algebraic Dynamics, Universitext, Springer, 1999 | Zbl

[7] Keshav Mukunda Littlewood Pisot numbers, J. Number Theory, Volume 117 (2006) no. 1, pp. 106-121 | DOI | MR | Zbl

[8] Raphael Salem Algebraic numbers and Fourier analysis, D. C. Heath and Company, 1963 | MR | Zbl

Cité par Sources :

Commentaires - Politique