Comptes Rendus
Géométrie algébrique
The set of forms with bounded strength is not closed
Comptes Rendus. Mathématique, Volume 360 (2022), pp. 371-380.

The strength of a homogeneous polynomial (or form) is the smallest length of an additive decomposition expressing it whose summands are reducible forms. Using polynomial functors, we show that the set of forms with bounded strength is not always Zariski-closed. More specifically, if the ground field is algebraically closed, we prove that the set of quartics with strength 3 is not Zariski-closed for a large number of variables.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.302
Classification : 15A21, 13A02, 14R20

Edoardo Ballico 1 ; Arthur Bik 2 ; Alessandro Oneto 1 ; Emanuele Ventura 3

1 Università di Trento, Via Sommarive, 14 - 38123 Povo (Trento), Italy
2 MPI for Mathematics in the Sciences, Leipzig, Germany
3 Politecnico di Torino, Dipartimento di Scienze Matematiche “G. L. Lagrange”, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2022__360_G4_371_0,
     author = {Edoardo Ballico and Arthur Bik and Alessandro Oneto and Emanuele Ventura},
     title = {The set of forms with bounded strength is not closed},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {371--380},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {360},
     year = {2022},
     doi = {10.5802/crmath.302},
     language = {en},
}
TY  - JOUR
AU  - Edoardo Ballico
AU  - Arthur Bik
AU  - Alessandro Oneto
AU  - Emanuele Ventura
TI  - The set of forms with bounded strength is not closed
JO  - Comptes Rendus. Mathématique
PY  - 2022
SP  - 371
EP  - 380
VL  - 360
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.302
LA  - en
ID  - CRMATH_2022__360_G4_371_0
ER  - 
%0 Journal Article
%A Edoardo Ballico
%A Arthur Bik
%A Alessandro Oneto
%A Emanuele Ventura
%T The set of forms with bounded strength is not closed
%J Comptes Rendus. Mathématique
%D 2022
%P 371-380
%V 360
%I Académie des sciences, Paris
%R 10.5802/crmath.302
%G en
%F CRMATH_2022__360_G4_371_0
Edoardo Ballico; Arthur Bik; Alessandro Oneto; Emanuele Ventura. The set of forms with bounded strength is not closed. Comptes Rendus. Mathématique, Volume 360 (2022), pp. 371-380. doi : 10.5802/crmath.302. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.302/

[1] Tigran Ananyan; Melvin Hochster Small subalgebras of polynomial rings and Stillman’s conjecture, J. Am. Math. Soc., Volume 33 (2020) no. 1, pp. 291-309 | DOI | MR | Zbl

[2] Tigran Ananyan; Melvin Hochster Strength conditions, small subalgebras, and Stillman bounds in degree 4, Trans. Am. Math. Soc. (2020) no. 373, pp. 4757-4806 | DOI | MR | Zbl

[3] Edoardo Ballico; Arthur Bik; Alessandro Oneto; Emanuele Ventura Strength and slice rank of forms are generically equal (2021) (https://arxiv.org/abs/2102.11549, to appear in Isr. J. Math.)

[4] Edoardo Ballico; Emanuele Ventura The strength for line bundles, Math. Scand., Volume 127 (2021) no. 3, pp. 405-440

[5] Arthur Bik Strength and Noetherianity for infinite Tensors, Ph. D. Thesis, Universität Bern (2020) https://biblio.unibe.ch/download/eldiss/20bik_ma.pdf

[6] Arthur Bik; Jan Draisma; Rob H. Eggermont Polynomials and tensors of bounded strength, Commun. Contemp. Math., Volume 21 (2019) no. 07, 1850062, 24 pages | MR | Zbl

[7] Arthur Bik; Jan Draisma; Rob H. Eggermont; Andrew Snowden The geometry of polynomial representations (2021) (https://arxiv.org/abs/2105.12621)

[8] Arthur Bik; Alessandro Oneto On the strength of general polynomials (2021) (https://doi.org/10.1080/03081087.2021.1947955, to appear in Linear Multilinear Algebra) | DOI

[9] Harm Derksen; Rob H. Eggermont; Andrew Snowden Topological Noetherianity for cubic polynomials, Algebra Number Theory, Volume 11 (2017) no. 9, pp. 2197-2212 | DOI | MR | Zbl

[10] Jan Draisma Topological Noetherianity of polynomial functors, J. Am. Math. Soc., Volume 32 (2019) no. 3, pp. 691-707 | DOI | MR | Zbl

[11] Daniel Erman; Steven V. Sam; Andrew Snowden Big polynomial rings and Stillman’s conjecture, Invent. Math., Volume 218 (2019) no. 2, pp. 413-439 | DOI | MR | Zbl

[12] Daniel Erman; Steven V. Sam; Andrew Snowden Big Polynomial Rings with Imperfect Coefficient Fields, Mich. Math. J., Volume 70 (2021) no. 3, pp. 649-672 | MR | Zbl

[13] Joe Harris Algebraic geometry: A first course, Graduate Texts in Mathematics, 133, Springer, 1992 | DOI | Zbl

[14] David Kazhdan; Alexander Polishchuk Linear subspaces of minimal codimension in hypersurfaces (2021) (https://arxiv.org/abs/2107.08080)

[15] David Kazhdan; Alexander Polishchuk Schmidt rank and singularities (2021) (https://arxiv.org/abs/2104.10198)

[16] David Kazhdan; Alexander Polishchuk Schmidt rank of quartics over perfect fields (2021) (https://arxiv.org/abs/2110.10244)

[17] David Kazhdan; Tamar Ziegler On ranks of polynomials, Algebr. Represent. Theory, Volume 21 (2018) no. 5, pp. 1017-1021 | DOI | MR | Zbl

[18] Serge Lang Hilbert’s Nullstellensatz in infinite-dimensional space, Proc. Am. Math. Soc., Volume 3 (1952), pp. 407-410 | MR | Zbl

[19] Wolfgang M. Schmidt The density of integer points on homogeneous varieties, Acta Math., Volume 154 (1985) no. 3-4, pp. 243-296 | DOI | MR | Zbl

Cité par Sources :

Commentaires - Politique