Comptes Rendus
Functional analysis, Operator theory
On an extension of a global implicit function theorem
Comptes Rendus. Mathématique, Volume 360 (2022), pp. 439-450.

We study the existence of global implicit functions for equations defined on open subsets of Banach spaces. The partial derivative with respect to the second variable is only required to have a left inverse instead of being invertible. Generalizing known results, we provide sufficient criteria which are easy to check. These conditions essentially rely on the existence of diffeomorphisms between the respective projections of the set of zeros and appropriate Banach spaces, as well as a corresponding growth bound. The projections further allow to consider cases where the global implicit function is not defined on all of the open subset corresponding to the first variable.

Received:
Accepted:
Published online:
DOI: 10.5802/crmath.309
Classification: 26B10, 58C15
Thomas Berger 1; Frédéric Haller 2

1 Institut für Mathematik, Universität Paderborn, Warburger Str. 100, 33098 Paderborn, Germany
2 Fachbereich Mathematik, Universität Hamburg, Bundesstrasse 55, D-20146 Hamburg, Germany
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRMATH_2022__360_G5_439_0,
     author = {Thomas Berger and Fr\'ed\'eric Haller},
     title = {On an extension of a global implicit function theorem},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {439--450},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {360},
     year = {2022},
     doi = {10.5802/crmath.309},
     language = {en},
}
TY  - JOUR
AU  - Thomas Berger
AU  - Frédéric Haller
TI  - On an extension of a global implicit function theorem
JO  - Comptes Rendus. Mathématique
PY  - 2022
SP  - 439
EP  - 450
VL  - 360
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.309
LA  - en
ID  - CRMATH_2022__360_G5_439_0
ER  - 
%0 Journal Article
%A Thomas Berger
%A Frédéric Haller
%T On an extension of a global implicit function theorem
%J Comptes Rendus. Mathématique
%D 2022
%P 439-450
%V 360
%I Académie des sciences, Paris
%R 10.5802/crmath.309
%G en
%F CRMATH_2022__360_G5_439_0
Thomas Berger; Frédéric Haller. On an extension of a global implicit function theorem. Comptes Rendus. Mathématique, Volume 360 (2022), pp. 439-450. doi : 10.5802/crmath.309. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.309/

[1] Joël Blot On global implicit functions, Nonlinear Anal., Theory Methods Appl., Volume 17 (1991) no. 10, pp. 947-959 | DOI | MR | Zbl

[2] Mihai Cristea A note on global implicit function theorem, JIPAM, J. Inequal. Pure Appl. Math., Volume 8 (2007) no. 4, 100, 15 pages | MR | Zbl

[3] Jean A. Dieudonné Foundations of Modern Analysis, Pure and Applied Mathematics, 10, Academic Press Inc., 1969

[4] Hannes Gernandt; Frédéric E. Haller; Timo Reis; Arjan J. van der Schaft Port-hamiltonian formulation of nonlinear electrical circuits, J. Geom. Phys., Volume 159 (2021), 103959, 16 pages | MR | Zbl

[5] Olivia Gutú; Jesús A. Jaramillo Global homeomorphisms and covering projections on metric spaces, Math. Ann., Volume 338 (2007) no. 1, pp. 75-95 | DOI | MR | Zbl

[6] Shigeo Ichiraku A note on global implicit function theorems, IEEE Trans. Circuits Syst., Volume 32 (1985) no. 5, pp. 503-505 | DOI | MR | Zbl

[7] John M. Lee Introduction to Smooth Manifolds, Graduate Texts in Mathematics, 218, Springer, 2012 | Zbl

[8] Wolfgang Mathis; Albrecht Reibiger Küpfmüller Theoretische Elektrotechnik, Springer, 2017 | DOI

[9] Roy Plastock Homeomorphisms between banach spaces, Trans. Am. Math. Soc., Volume 200 (1974), pp. 169-183 | DOI | MR | Zbl

[10] Werner C. Rheinboldts Local mapping relations and global implicit function theorems, Trans. Am. Math. Soc., Volume 138 (1969), pp. 183-198 | DOI | MR | Zbl

[11] Irwin W. Sandberg Global implicit function theorems, IEEE Trans. Circuits Syst., Volume 28 (1981), pp. 145-149 | DOI | MR | Zbl

[12] Weinian Zhang; Shuzhi S. Ge A global implicit function theorem without initial point and its applications to control of non-affine systems of high dimensions, J. Math. Anal. Appl., Volume 313 (2006) no. 1, pp. 251-261 | DOI | MR | Zbl

Cited by Sources:

Comments - Policy