Comptes Rendus
Analyse numérique, Équations aux dérivées partielles
Does the multiresolution lattice Boltzmann method allow to deal with waves passing through mesh jumps?
Comptes Rendus. Mathématique, Volume 360 (2022), pp. 761-769.

We consider an adaptive multiresolution-based lattice Boltzmann scheme, which we have recently introduced and studied from the perspective of the error control and the theory of the equivalent equations. This numerical strategy leads to high compression rates, error control and its high accuracy has been explained on uniform and dynamically adaptive grids. However, one key issue with non-uniform meshes within the framework of lattice Boltzmann schemes is to properly handle acoustic waves passing through a level jump of the grid. It usually yields spurious effects, in particular reflected waves. In this paper, we propose a simple mono-dimensional test-case for the linear wave equation with a fixed adapted mesh characterized by a potentially large level jump. We investigate this configuration with our original strategy and prove that we can handle and control the amplitude of the reflected wave, which is of fourth order in the space step of the finest mesh. Numerical illustrations show that the proposed strategy outperforms the existing methods in the literature and allow to assess the ability of the method to handle the mesh jump properly.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.319
Classification : 65M99, 65M50, 76M28

Thomas Bellotti 1 ; Loïc Gouarin 1 ; Benjamin Graille 2 ; Marc Massot 1

1 CMAP, CNRS, Ecole polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau Cedex, France
2 Université Paris-Saclay, CNRS, Laboratoire de mathématiques d’Orsay, 91405, Orsay, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2022__360_G7_761_0,
     author = {Thomas Bellotti and Lo{\"\i}c Gouarin and Benjamin Graille and Marc Massot},
     title = {Does the multiresolution lattice {Boltzmann} method allow to deal with waves passing through mesh jumps?},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {761--769},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {360},
     year = {2022},
     doi = {10.5802/crmath.319},
     language = {en},
}
TY  - JOUR
AU  - Thomas Bellotti
AU  - Loïc Gouarin
AU  - Benjamin Graille
AU  - Marc Massot
TI  - Does the multiresolution lattice Boltzmann method allow to deal with waves passing through mesh jumps?
JO  - Comptes Rendus. Mathématique
PY  - 2022
SP  - 761
EP  - 769
VL  - 360
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.319
LA  - en
ID  - CRMATH_2022__360_G7_761_0
ER  - 
%0 Journal Article
%A Thomas Bellotti
%A Loïc Gouarin
%A Benjamin Graille
%A Marc Massot
%T Does the multiresolution lattice Boltzmann method allow to deal with waves passing through mesh jumps?
%J Comptes Rendus. Mathématique
%D 2022
%P 761-769
%V 360
%I Académie des sciences, Paris
%R 10.5802/crmath.319
%G en
%F CRMATH_2022__360_G7_761_0
Thomas Bellotti; Loïc Gouarin; Benjamin Graille; Marc Massot. Does the multiresolution lattice Boltzmann method allow to deal with waves passing through mesh jumps?. Comptes Rendus. Mathématique, Volume 360 (2022), pp. 761-769. doi : 10.5802/crmath.319. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.319/

[1] Thomas Astoul; Gauthier Wissocq; Jean-François Boussuge; Alois Sengissen; Pierre Sagaut Lattice Boltzmann method for computational aeroacoustics on non-uniform meshes: A direct grid coupling approach, J. Comput. Phys., Volume 447 (2021), 110667, 24 pages | MR | Zbl

[2] Thomas Bellotti; Loïc Gouarin; Benjamin Graille; Marc Massot High accuracy analysis of adaptive multiresolution-based lattice Boltzmann schemes via the equivalent equations (2021) (submitted to SMAI J. Comput. Math., https://hal.archives-ouvertes.fr/hal-03234120, https://arxiv.org/abs/2105.12609)

[3] Thomas Bellotti; Loïc Gouarin; Benjamin Graille; Marc Massot Multidimensional fully adaptive lattice Boltzmann methods with error control based on multiresolution analysis (2021) (submitted to J. Comput. Phys., https://hal.archives-ouvertes.fr/hal-03158073, https://arxiv.org/abs/2103.02903)

[4] Thomas Bellotti; Loïc Gouarin; Benjamin Graille; Marc Massot Multiresolution-based mesh adaptation and error control for lattice Boltzmann methods with applications to hyperbolic conservation laws (2021) (to appear in SIAM J. Sci. Comput., https://hal.archives-ouvertes.fr/hal-03148621, https://arxiv.org/abs/2102.12163)

[5] Ralf Deiterding; Margarete Oliveira Domingues; Sonia M Gomes; Kai Schneider Comparison of adaptive multiresolution and adaptive mesh refinement applied to simulations of the compressible Euler equations, SIAM J. Sci. Comput., Volume 38 (2016) no. 5, p. S173-S193 | DOI | MR | Zbl

[6] Max Duarte; Marc Massot; Stéphane Descombes; Christian Tenaud; Thierry Dumont; Violaine Louvet; Frédérique Laurent New resolution strategy for multiscale reaction waves using time operator splitting, space adaptive multiresolution, and dedicated high order implicit/explicit time integrators, SIAM J. Sci. Comput., Volume 34 (2012) no. 1, p. A76-A104 | DOI | MR | Zbl

[7] François Dubois Equivalent partial differential equations of a lattice Boltzmann scheme, Comput. Math. Appl., Volume 55 (2008) no. 7, pp. 1441-1449 | DOI | MR | Zbl

[8] Abbas Fakhari; Taehun Lee Finite-difference lattice Boltzmann method with a block-structured adaptive-mesh-refinement technique, Phys. Rev. E, Volume 89 (2014) no. 3, 033310

[9] Félix Gendre; Denis Ricot; Guillaume Fritz; Pierre Sagaut Grid refinement for aeroacoustics in the lattice Boltzmann method: A directional splitting approach, Phys. Rev. E, Volume 96 (2017) no. 2, 023311

[10] Jan Horstmann Hybrid numerical method based on the lattice Boltzmann approach with application to non-uniform grids, Ph. D. Thesis, Université de Lyon (2018)

[11] Daniel Walter Lagrava Sandoval Revisiting grid refinement algorithms for the lattice Boltzmann method, Ph. D. Thesis, University of Geneva (2012)

[12] Müller Moreira Lopes; Margarete Oliveira Domingues; Kai Schneider; Odim Mendes Local time-stepping for adaptive multiresolution using natural extension of Runge–Kutta methods, J. Comput. Phys., Volume 382 (2019), pp. 291-318 | DOI | MR | Zbl

[13] Martin Rohde; Drona Kandhai; Jos J. Derksen; Harry E. A. Van den Akker A generic, mass conservative local grid refinement technique for lattice-Boltzmann schemes, Int. J. Numer. Methods Fluids, Volume 51 (2006) no. 4, pp. 439-468 | DOI | MR | Zbl

Cité par Sources :

Commentaires - Politique