We show that a partition of the unity (or POVM) on a Hilbert space that is almost orthogonal is close to an orthogonal POVM in the same von Neumann algebra. This generalizes to infinite dimension previous results in matrix algebras by Kempe–Vidick and Ji–Natarajan–Vidick–Wright–Yuen. Quantitatively, our result are also finer, as we obtain a linear dependance, which is optimal.
We also generalize to infinite dimension a duality result between POVMs and minimal majorants of finite subsets in the predual of a von Neumann algebra.
Nous montrons qu’une partition de l’unité dans un espace de Hilbert qui est presque orthogonale est proche d’une partition de l’unité orthogonale dans la même algèbre de von Neumann. Ce résultat affine et généralise à la dimension infinie des résultats antérieurs de Kempe–Vidick et Ji–Natarajan–Vidick–Wright–Yuen dans les algèbres de matrices. Quantitativement, nos résultats sont également plus fins puisque nous obtenons une dépendance linéaire, qui est optimale.
Nous généralisons également à la dimension infinie un autre résultat de dualité entre partitions de l’unité et majorants minimaux de parties finies dans le prédual d’une algèbre de von Neumann.
Revised:
Accepted:
Published online:
Mikael de la Salle 1
@article{CRMATH_2022__360_G5_549_0, author = {Mikael de la Salle}, title = {Orthogonalization of {Positive} {Operator} {Valued} {Measures}}, journal = {Comptes Rendus. Math\'ematique}, pages = {549--560}, publisher = {Acad\'emie des sciences, Paris}, volume = {360}, year = {2022}, doi = {10.5802/crmath.326}, language = {en}, }
Mikael de la Salle. Orthogonalization of Positive Operator Valued Measures. Comptes Rendus. Mathématique, Volume 360 (2022), pp. 549-560. doi : 10.5802/crmath.326. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.326/
[1] An introduction to factors (Book available https://www.idpoisson.fr/anantharaman/publications/IIun.pdf)
[2] Stability of approximate group actions: uniform and probabilistic (2020) (https://arxiv.org/abs/2005.06652)
[3] MIP*=RE (2020) (https://arxiv.org/abs/2001.04383)
[4] Quantum soundness of the classical low individual degree test (2020) (https://arxiv.org/abs/2009.12982)
[5] Quantum soundness of testing tensor codes (2021) (Proceedings of the 2021 IEEE 62nd Annual Symposium on Foundations of Computer Science, https://arxiv.org/abs/2111.08131)
[6] Noncommutative maximal ergodic theorems, J. Am. Math. Soc., Volume 20 (2007) no. 2, pp. 385-439 | DOI | MR | Zbl
[7] Parallel repetition of entangled games, Proceedings of the 43rd annual ACM symposium on theory of computing, STOC’11 (2011), ACM Press, 2011, pp. 353-362 | Zbl
[8] Non-commutative vector valued -spaces and completely -summing maps, Astérisque, 247, Société Mathématique de France, 1998 | Numdam
[9] Tensor Products of C*-Algebras and Operator Spaces – The Connes-Kirchberg Problem, London Mathematical Society Student Texts, 96, Cambridge University Press, 2020 | DOI
[10] Theory of operator algebras. I, Springer, 1979 | DOI | Zbl
[11] A collection of mathematical problems, Interscience Tracts in Pure and Applied Mathematics, 8, Interscience Publishers, 1960
Cited by Sources:
Comments - Policy