Comptes Rendus
Géométrie algébrique, Théorie des nombres
Bounded Generation by semi-simple elements: quantitative results
[Engendrement borné par éléments semi-simples : résultats quantitatifs]
Comptes Rendus. Mathématique, Volume 360 (2022), pp. 1249-1255.

Nous prouvons que pour un corps de nombres F, la distribution des points d’un ensemble Σ𝔸 F n admettant une paramétrisation purement exponentielle, par exemple un ensemble de matrices bornément engendré par des éléments semi-simples (diagonalisables), est de taille au plus logarithmique lorsqu’il est ordonné par hauteur. Par conséquent, on obtient qu’un groupe linéaire ΓGL n (K) sur un corps K de caractéristique zéro admet un paramétrisation purement exponentielle si et seulement s’il est de type fini et la composante connexe de sa clôture de Zariski est un tore. Nos résultats sont obtenus via une inégalité sur la hauteur des tuples minimaux d’un polynôme purement exponentiel. Un ingrédient clé de notre démonstration est une version forte par Evertse du théorème sur l’équation en S-unités.

We prove that for a number field F, the distribution of the points of a set Σ𝔸 F n with a purely exponential parametrization, for example a set of matrices boundedly generated by semi-simple (diagonalizable) elements, is of at most logarithmic size when ordered by height. As a consequence, one obtains that a linear group ΓGL n (K) over a field K of characteristic zero admits a purely exponential parametrization if and only if it is finitely generated and the connected component of its Zariski closure is a torus. Our results are obtained via a key inequality about the heights of minimal m-tuples for purely exponential parametrizations. One main ingredient of our proof is Evertse’s strengthening of the S-Unit Equation Theorem.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.376
Classification : 11D75

Pietro Corvaja 1 ; Julian L. Demeio 2 ; Andrei S. Rapinchuk 3 ; Jinbo Ren 4 ; Umberto M. Zannier 5

1 Dipartimento di Scienze Matematiche, Informatiche e Fisiche, via delle Scienze, 206, 33100 Udine, Italy
2 Departement Mathematik und Informatik, Universität Basel, 4051 Basel, Switzerland
3 Department of Mathematics, University of Virginia, Charlottesville, VA 22904-4137, USA
4 School of Mathematical Sciences, Xiamen University, Xiamen 361005, China
5 Scuola Normale Superiore, Piazza dei Cavalieri, 7, 56126 Pisa, Italy
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2022__360_G11_1249_0,
     author = {Pietro Corvaja and Julian L. Demeio and Andrei S. Rapinchuk and Jinbo Ren and Umberto M. Zannier},
     title = {Bounded {Generation} by semi-simple elements: quantitative results},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1249--1255},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {360},
     year = {2022},
     doi = {10.5802/crmath.376},
     language = {en},
}
TY  - JOUR
AU  - Pietro Corvaja
AU  - Julian L. Demeio
AU  - Andrei S. Rapinchuk
AU  - Jinbo Ren
AU  - Umberto M. Zannier
TI  - Bounded Generation by semi-simple elements: quantitative results
JO  - Comptes Rendus. Mathématique
PY  - 2022
SP  - 1249
EP  - 1255
VL  - 360
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.376
LA  - en
ID  - CRMATH_2022__360_G11_1249_0
ER  - 
%0 Journal Article
%A Pietro Corvaja
%A Julian L. Demeio
%A Andrei S. Rapinchuk
%A Jinbo Ren
%A Umberto M. Zannier
%T Bounded Generation by semi-simple elements: quantitative results
%J Comptes Rendus. Mathématique
%D 2022
%P 1249-1255
%V 360
%I Académie des sciences, Paris
%R 10.5802/crmath.376
%G en
%F CRMATH_2022__360_G11_1249_0
Pietro Corvaja; Julian L. Demeio; Andrei S. Rapinchuk; Jinbo Ren; Umberto M. Zannier. Bounded Generation by semi-simple elements: quantitative results. Comptes Rendus. Mathématique, Volume 360 (2022), pp. 1249-1255. doi : 10.5802/crmath.376. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.376/

[1] Francesco Amoroso; Evelina Viada Small points on subvarieties of a torus, Duke Math. J., Volume 150 (2009) no. 3, pp. 407-442 | DOI | MR | Zbl

[2] Enrico Bombieri; Walter Gubler Heights in Diophantine geometry, New Mathematical Monographs, 4, Cambridge University Press, 2006, xvi+652 pages | DOI | MR

[3] Pietro Corvaja; Julian L. Demeio; Andrei S. Rapinchuk; Jinbo Ren; Umberto M. Zannier Purely Exponential Parametrizations and their Group-theoretic Applications (2022) (in preparation)

[4] Pietro Corvaja; Andrei S. Rapinchuk; Jinbo Ren; Umberto M. Zannier Non-virtually abelian anisotropic linear groups are not boundedly generated, Invent. Math., Volume 227 (2022) no. 1, pp. 1-26 | DOI | MR | Zbl

[5] Pietro Corvaja; Umberto M. Zannier Applications of Diophantine approximation to integral points and transcendence, Cambridge Tracts in Mathematics, 212, Cambridge University Press, 2018, x+198 pages | DOI | MR

[6] William Duke; Zeev Rudnick; Peter Sarnak Density of integer points on affine homogeneous varieties, Duke Math. J., Volume 71 (1993) no. 1, pp. 143-179 | DOI | MR | Zbl

[7] Jan-Hendrik Evertse; Kálmán Győry Unit equations in Diophantine number theory, Cambridge Studies in Advanced Mathematics, 146, Cambridge University Press, 2015, xv+363 pages | DOI | MR

[8] Jan-Hendrik Evertse; Hans P. Schlickewei; Wolfgang M. Schmidt Linear equations in variables which lie in a multiplicative group, Ann. Math., Volume 155 (2002) no. 3, pp. 807-836 | DOI | MR | Zbl

[9] Alexander Gorodnik; Amos Nevo Counting lattice points, J. Reine Angew. Math., Volume 663 (2012), pp. 127-176 | DOI | MR | Zbl

[10] Alexander Gorodnik; Barak Weiss Distribution of lattice orbits on homogeneous varieties, Geom. Funct. Anal., Volume 17 (2007) no. 1, pp. 58-115 | DOI | MR | Zbl

[11] Marc Hindry; Joseph H. Silverman Diophantine geometry. An introduction, Graduate Texts in Mathematics, 201, Springer, 2000, xiv+558 pages | DOI | MR

[12] François Maucourant Homogeneous asymptotic limits of Haar measures of semisimple linear groups and their lattices, Duke Math. J., Volume 136 (2007) no. 2, pp. 357-399 | DOI | MR | Zbl

[13] Gopal Prasad; Andrei S. Rapinchuk Existence of irreducible -regular elements in Zariski-dense subgroups, Math. Res. Lett., Volume 10 (2003) no. 1, pp. 21-32 | DOI | MR | Zbl

[14] Gopal Prasad; Andrei S. Rapinchuk Generic elements in Zariski-dense subgroups and isospectral locally symmetric spaces, Thin groups and superstrong approximation (Mathematical Sciences Research Institute Publications), Volume 61, Cambridge University Press, 2014, pp. 211-252 | MR | Zbl

[15] Gopal Prasad; Andrei S. Rapinchuk Generic elements of a Zariski-dense subgroup form an open subset, Trans. Mosc. Math. Soc., Volume 78 (2017), pp. 299-314 | DOI | MR | Zbl

[16] Gaël Rémond Sur les sous-variétés des tores, Compos. Math., Volume 134 (2002) no. 3, pp. 337-366 | DOI | MR | Zbl

[17] Umberto M. Zannier Lecture notes on Diophantine analysis, Appunti. Scuola Normale Superiore di Pisa (Nuova Serie), 8, Edizioni della Normale, 2009, xvi+237 pages (With an appendix by Francesco Amoroso) | MR

Cité par Sources :

Commentaires - Politique