[Engendrement borné par éléments semi-simples : résultats quantitatifs]
Nous prouvons que pour un corps de nombres
We prove that for a number field
Révisé le :
Accepté le :
Publié le :
Pietro Corvaja 1 ; Julian L. Demeio 2 ; Andrei S. Rapinchuk 3 ; Jinbo Ren 4 ; Umberto M. Zannier 5

@article{CRMATH_2022__360_G11_1249_0, author = {Pietro Corvaja and Julian L. Demeio and Andrei S. Rapinchuk and Jinbo Ren and Umberto M. Zannier}, title = {Bounded {Generation} by semi-simple elements: quantitative results}, journal = {Comptes Rendus. Math\'ematique}, pages = {1249--1255}, publisher = {Acad\'emie des sciences, Paris}, volume = {360}, year = {2022}, doi = {10.5802/crmath.376}, language = {en}, }
TY - JOUR AU - Pietro Corvaja AU - Julian L. Demeio AU - Andrei S. Rapinchuk AU - Jinbo Ren AU - Umberto M. Zannier TI - Bounded Generation by semi-simple elements: quantitative results JO - Comptes Rendus. Mathématique PY - 2022 SP - 1249 EP - 1255 VL - 360 PB - Académie des sciences, Paris DO - 10.5802/crmath.376 LA - en ID - CRMATH_2022__360_G11_1249_0 ER -
%0 Journal Article %A Pietro Corvaja %A Julian L. Demeio %A Andrei S. Rapinchuk %A Jinbo Ren %A Umberto M. Zannier %T Bounded Generation by semi-simple elements: quantitative results %J Comptes Rendus. Mathématique %D 2022 %P 1249-1255 %V 360 %I Académie des sciences, Paris %R 10.5802/crmath.376 %G en %F CRMATH_2022__360_G11_1249_0
Pietro Corvaja; Julian L. Demeio; Andrei S. Rapinchuk; Jinbo Ren; Umberto M. Zannier. Bounded Generation by semi-simple elements: quantitative results. Comptes Rendus. Mathématique, Volume 360 (2022), pp. 1249-1255. doi : 10.5802/crmath.376. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.376/
[1] Small points on subvarieties of a torus, Duke Math. J., Volume 150 (2009) no. 3, pp. 407-442 | DOI | MR | Zbl
[2] Heights in Diophantine geometry, New Mathematical Monographs, 4, Cambridge University Press, 2006, xvi+652 pages | DOI | MR
[3] Purely Exponential Parametrizations and their Group-theoretic Applications (2022) (in preparation)
[4] Non-virtually abelian anisotropic linear groups are not boundedly generated, Invent. Math., Volume 227 (2022) no. 1, pp. 1-26 | DOI | MR | Zbl
[5] Applications of Diophantine approximation to integral points and transcendence, Cambridge Tracts in Mathematics, 212, Cambridge University Press, 2018, x+198 pages | DOI | MR
[6] Density of integer points on affine homogeneous varieties, Duke Math. J., Volume 71 (1993) no. 1, pp. 143-179 | DOI | MR | Zbl
[7] Unit equations in Diophantine number theory, Cambridge Studies in Advanced Mathematics, 146, Cambridge University Press, 2015, xv+363 pages | DOI | MR
[8] Linear equations in variables which lie in a multiplicative group, Ann. Math., Volume 155 (2002) no. 3, pp. 807-836 | DOI | MR | Zbl
[9] Counting lattice points, J. Reine Angew. Math., Volume 663 (2012), pp. 127-176 | DOI | MR | Zbl
[10] Distribution of lattice orbits on homogeneous varieties, Geom. Funct. Anal., Volume 17 (2007) no. 1, pp. 58-115 | DOI | MR | Zbl
[11] Diophantine geometry. An introduction, Graduate Texts in Mathematics, 201, Springer, 2000, xiv+558 pages | DOI | MR
[12] Homogeneous asymptotic limits of Haar measures of semisimple linear groups and their lattices, Duke Math. J., Volume 136 (2007) no. 2, pp. 357-399 | DOI | MR | Zbl
[13] Existence of irreducible
[14] Generic elements in Zariski-dense subgroups and isospectral locally symmetric spaces, Thin groups and superstrong approximation (Mathematical Sciences Research Institute Publications), Volume 61, Cambridge University Press, 2014, pp. 211-252 | MR | Zbl
[15] Generic elements of a Zariski-dense subgroup form an open subset, Trans. Mosc. Math. Soc., Volume 78 (2017), pp. 299-314 | DOI | MR | Zbl
[16] Sur les sous-variétés des tores, Compos. Math., Volume 134 (2002) no. 3, pp. 337-366 | DOI | MR | Zbl
[17] Lecture notes on Diophantine analysis, Appunti. Scuola Normale Superiore di Pisa (Nuova Serie), 8, Edizioni della Normale, 2009, xvi+237 pages (With an appendix by Francesco Amoroso) | MR
Cité par Sources :
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier