Comptes Rendus
A subspace theorem approach to integral points on curves
[Points entiers sur les courbes et théorème des sous-espaces]
Comptes Rendus. Mathématique, Volume 334 (2002) no. 4, pp. 267-271.

Nous donnons une nouvelle démonstration du théorème de Siegel sur les points entiers des courbes, qui repose sur le théorème des sous-espaces de Schmidt. Notre méthode n'utilise pas le plongement d'une courbe dans sa jacobienne, évitant ainsi l'utilisation de résultats sur l'arithmétique des variétés abéliennes.

We present a proof of Siegel's theorem on integral points on affine curves, through the Schmidt subspace theorem, rather than Roth's theorem. This approach allows one to work only on curves, avoiding the embedding into Jacobians and the subsequent use of tools from the arithmetic of Abelian varieties.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(02)02240-9

Pietro Corvaja 1 ; Umberto Zannier 2

1 Dip. di Matematica e Informatica, Via delle Scienze, 33100 Udine, Italy
2 Ist. Univ. Arch.-D.C.A., S. Croce, 191, 30135 Venezia, Italy
@article{CRMATH_2002__334_4_267_0,
     author = {Pietro Corvaja and Umberto Zannier},
     title = {A subspace theorem approach to integral points on curves},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {267--271},
     publisher = {Elsevier},
     volume = {334},
     number = {4},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02240-9},
     language = {en},
}
TY  - JOUR
AU  - Pietro Corvaja
AU  - Umberto Zannier
TI  - A subspace theorem approach to integral points on curves
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 267
EP  - 271
VL  - 334
IS  - 4
PB  - Elsevier
DO  - 10.1016/S1631-073X(02)02240-9
LA  - en
ID  - CRMATH_2002__334_4_267_0
ER  - 
%0 Journal Article
%A Pietro Corvaja
%A Umberto Zannier
%T A subspace theorem approach to integral points on curves
%J Comptes Rendus. Mathématique
%D 2002
%P 267-271
%V 334
%N 4
%I Elsevier
%R 10.1016/S1631-073X(02)02240-9
%G en
%F CRMATH_2002__334_4_267_0
Pietro Corvaja; Umberto Zannier. A subspace theorem approach to integral points on curves. Comptes Rendus. Mathématique, Volume 334 (2002) no. 4, pp. 267-271. doi : 10.1016/S1631-073X(02)02240-9. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02240-9/

[1] J.H. Evertse An improvement of the quantitative subspace theorem, Compositio Math., Volume 101 (1996), pp. 225-311

[2] G. Faltings Endlichkeitssätzes für abelsche Varietäten über Zahlkörpern, Invent. Math., Volume 73 (1983), pp. 349-366

[3] O. Forster Riemann Surfaces, Springer-Verlag, 1981

[4] M. Hindry; J.H. Silverman Diophantine Geometry, Springer-Verlag, 2000

[5] S. Lang Fundamentals of Diophantine Geometry, Springer-Verlag, 1982

[6] H.P. Schlickewei The quantitative subspace theorem for number fields, Compositio Math., Volume 82 (1992), pp. 245-273

[7] W.M. Schmidt Diophantine Approximation, Lecture Notes in Math., 785, Springer-Verlag, 1987

[8] W.M. Schmidt Diophantine Approximations and Diophantine Equations, Lecture Notes in Math., 1467, Springer-Verlag, 1991

[9] J.-P. Serre Lectures on the Mordell–Weil Theorem, Vieweg, 1989

[10] C.L. Siegel Über einige Anwendungen diophantischer Approximationen, Abh. Pr. Akad. Wiss., Volume 1 (1929) (Ges. Abh., I, 209–266)

[11] P. Vojta, Diophantine Approximations and Value Distribution theory, Lecture Notes in Math. 1239, Springer-Verlag

Cité par Sources :

Commentaires - Politique