Comptes Rendus
A subspace theorem approach to integral points on curves
[Points entiers sur les courbes et théorème des sous-espaces]
Comptes Rendus. Mathématique, Volume 334 (2002) no. 4, pp. 267-271.

Nous donnons une nouvelle démonstration du théorème de Siegel sur les points entiers des courbes, qui repose sur le théorème des sous-espaces de Schmidt. Notre méthode n'utilise pas le plongement d'une courbe dans sa jacobienne, évitant ainsi l'utilisation de résultats sur l'arithmétique des variétés abéliennes.

We present a proof of Siegel's theorem on integral points on affine curves, through the Schmidt subspace theorem, rather than Roth's theorem. This approach allows one to work only on curves, avoiding the embedding into Jacobians and the subsequent use of tools from the arithmetic of Abelian varieties.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(02)02240-9

Pietro Corvaja 1 ; Umberto Zannier 2

1 Dip. di Matematica e Informatica, Via delle Scienze, 33100 Udine, Italy
2 Ist. Univ. Arch.-D.C.A., S. Croce, 191, 30135 Venezia, Italy
@article{CRMATH_2002__334_4_267_0,
     author = {Pietro Corvaja and Umberto Zannier},
     title = {A subspace theorem approach to integral points on curves},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {267--271},
     publisher = {Elsevier},
     volume = {334},
     number = {4},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02240-9},
     language = {en},
}
TY  - JOUR
AU  - Pietro Corvaja
AU  - Umberto Zannier
TI  - A subspace theorem approach to integral points on curves
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 267
EP  - 271
VL  - 334
IS  - 4
PB  - Elsevier
DO  - 10.1016/S1631-073X(02)02240-9
LA  - en
ID  - CRMATH_2002__334_4_267_0
ER  - 
%0 Journal Article
%A Pietro Corvaja
%A Umberto Zannier
%T A subspace theorem approach to integral points on curves
%J Comptes Rendus. Mathématique
%D 2002
%P 267-271
%V 334
%N 4
%I Elsevier
%R 10.1016/S1631-073X(02)02240-9
%G en
%F CRMATH_2002__334_4_267_0
Pietro Corvaja; Umberto Zannier. A subspace theorem approach to integral points on curves. Comptes Rendus. Mathématique, Volume 334 (2002) no. 4, pp. 267-271. doi : 10.1016/S1631-073X(02)02240-9. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02240-9/

[1] J.H. Evertse An improvement of the quantitative subspace theorem, Compositio Math., Volume 101 (1996), pp. 225-311

[2] G. Faltings Endlichkeitssätzes für abelsche Varietäten über Zahlkörpern, Invent. Math., Volume 73 (1983), pp. 349-366

[3] O. Forster Riemann Surfaces, Springer-Verlag, 1981

[4] M. Hindry; J.H. Silverman Diophantine Geometry, Springer-Verlag, 2000

[5] S. Lang Fundamentals of Diophantine Geometry, Springer-Verlag, 1982

[6] H.P. Schlickewei The quantitative subspace theorem for number fields, Compositio Math., Volume 82 (1992), pp. 245-273

[7] W.M. Schmidt Diophantine Approximation, Lecture Notes in Math., 785, Springer-Verlag, 1987

[8] W.M. Schmidt Diophantine Approximations and Diophantine Equations, Lecture Notes in Math., 1467, Springer-Verlag, 1991

[9] J.-P. Serre Lectures on the Mordell–Weil Theorem, Vieweg, 1989

[10] C.L. Siegel Über einige Anwendungen diophantischer Approximationen, Abh. Pr. Akad. Wiss., Volume 1 (1929) (Ges. Abh., I, 209–266)

[11] P. Vojta, Diophantine Approximations and Value Distribution theory, Lecture Notes in Math. 1239, Springer-Verlag

  • Gordon Heier; Aaron Levin A Schmidt-Nochka theorem for closed subschemes in subgeneral position, Journal für die Reine und Angewandte Mathematik, Volume 819 (2025), pp. 205-229 | DOI:10.1515/crelle-2024-0085 | Zbl:7982963
  • Natalia Garcia-Fritz; Hector Pasten A criterion for nondensity of integral points, Bulletin of the London Mathematical Society, Volume 56 (2024) no. 6, pp. 1939-1950 | DOI:10.1112/blms.13035 | Zbl:7922696
  • Ariyan Javanpeykar; Aaron Levin Urata's theorem in the logarithmic case and applications to integral points, Bulletin of the London Mathematical Society, Volume 54 (2022) no. 5, pp. 1772-1790 | DOI:10.1112/blms.12655 | Zbl:1521.14047
  • Laura Capuano; Amos Turchet Lang-Vojta conjecture over function fields for surfaces dominating Gm2, European Journal of Mathematics, Volume 8 (2022) no. 2, pp. 573-610 | DOI:10.1007/s40879-021-00502-8 | Zbl:1498.14061
  • Umberto Zannier Integral points on curves f(X)f(Y)XY, Mathematische Zeitschrift, Volume 301 (2022) no. 4, pp. 3609-3616 | DOI:10.1007/s00209-022-03030-7 | Zbl:1495.11076
  • Nathan Grieve On arithmetic inequalities for points of bounded degree, Research in Number Theory, Volume 7 (2021) no. 1, p. 14 (Id/No 1) | DOI:10.1007/s40993-020-00226-w | Zbl:1506.11101
  • Noriko Hirata-Kohno Diophantine approximation, Sugaku Expositions, Volume 34 (2021) no. 2, pp. 205-229 | DOI:10.1090/suga/463 | Zbl:1489.11102
  • Kenneth Ascher; Amos Turchet Hyperbolicity of varieties of log general type, Arithmetic geometry of logarithmic pairs and hyperbolicity of moduli spaces. Hyperbolicity in Montréal. Based on three workshops, Montréal, Canada, 2018–2019, Cham: Springer, 2020, pp. 197-247 | DOI:10.1007/978-3-030-49864-1_4 | Zbl:1470.11179
  • Gordon Heier; Aaron Levin On the degeneracy of integral points and entire curves in the complement of nef effective divisors, Journal of Number Theory, Volume 217 (2020), pp. 301-319 | DOI:10.1016/j.jnt.2020.05.013 | Zbl:1456.11119
  • Min Ru A Cartan's second main theorem approach in Nevanlinna theory, Acta Mathematica Sinica. English Series, Volume 34 (2018) no. 8, pp. 1208-1224 | DOI:10.1007/s10114-018-7367-4 | Zbl:1407.32006
  • Min Ru On a general Diophantine inequality, Functiones et Approximatio. Commentarii Mathematici, Volume 56 (2017) no. 2, pp. 143-163 | DOI:10.7169/facm/1599 | Zbl:1432.11101
  • Aaron Levin On the Schmidt subspace theorem for algebraic points, Duke Mathematical Journal, Volume 163 (2014) no. 15, pp. 2841-2885 | DOI:10.1215/00127094-2827017 | Zbl:1321.11073
  • On some applications of Diophantine approximations. (A translation of Carl Ludwig Siegel's “Über einige Anwendungen diophantischer Approximationen” by Clemens Fuchs)., Quaderni. Scuola Normale Superiore di Pisa. Monographs, 2, Pisa: Edizioni della Normale, 2014 | DOI:10.1007/978-88-7642-520-2 | Zbl:1311.11006
  • Gordon Heier; Min Ru Essentially large divisors and their arithmetic and function-theoretic inequalities, The Asian Journal of Mathematics, Volume 16 (2012) no. 3, pp. 387-407 | DOI:10.4310/ajm.2012.v16.n3.a2 | Zbl:1320.11058
  • Pascal Autissier On the nondensity of integral points, Duke Mathematical Journal, Volume 158 (2011) no. 1, pp. 13-27 | DOI:10.1215/00127094-1276292 | Zbl:1217.14020
  • Chien-Wei Lin; Julie Tzu-Yueh Wang Generalizations of rigid analytic Picard theorems, Proceedings of the American Mathematical Society, Volume 138 (2010) no. 1, pp. 133-139 | DOI:10.1090/s0002-9939-09-10038-2 | Zbl:1183.32012
  • Aaron Levin Generalizations of Siegel's and Picard's theorems, Annals of Mathematics. Second Series, Volume 170 (2009) no. 2, pp. 609-655 | DOI:10.4007/annals.2009.170.609 | Zbl:1250.11067
  • C. Gasbarri Dyson's theorem for curves, Journal of Number Theory, Volume 129 (2009) no. 1, pp. 36-58 | DOI:10.1016/j.jnt.2008.09.005 | Zbl:1242.11043
  • Pietro Corvaja; Umberto Zannier Applications of the subspace theorem to certain Diophantine problems. A survey of some recent results, Diophantine approximation. Festschrift for Wolfgang Schmidt. Based on lectures given at a conference at the Erwin Schrödinger Institute, Vienna, Austria, 2003, Wien: Springer, 2008, pp. 161-174 | DOI:10.1007/978-3-211-74280-8_8 | Zbl:1245.11086
  • Umberto Zannier On the integral points on certain algebraic varieties, Proceedings of the 4th European congress of mathematics (ECM), Stockholm, Sweden, June 27–July 2, 2004, Zürich: European Mathematical Society (EMS), 2005, pp. 529-546 | Zbl:1079.14028
  • P. Corvaja; U. Zannier On integral points on surfaces, Annals of Mathematics. Second Series, Volume 160 (2004) no. 2, pp. 705-726 | DOI:10.4007/annals.2004.160.705 | Zbl:1146.11035
  • Pietro Corvaja; Umberto Zannier On the number of integral points on algebraic curves, Journal für die Reine und Angewandte Mathematik, Volume 565 (2003), pp. 27-42 | DOI:10.1515/crll.2003.103 | Zbl:1153.11315

Cité par 22 documents. Sources : zbMATH

Commentaires - Politique