[Points entiers sur les courbes et théorème des sous-espaces]
Nous donnons une nouvelle démonstration du théorème de Siegel sur les points entiers des courbes, qui repose sur le théorème des sous-espaces de Schmidt. Notre méthode n'utilise pas le plongement d'une courbe dans sa jacobienne, évitant ainsi l'utilisation de résultats sur l'arithmétique des variétés abéliennes.
We present a proof of Siegel's theorem on integral points on affine curves, through the Schmidt subspace theorem, rather than Roth's theorem. This approach allows one to work only on curves, avoiding the embedding into Jacobians and the subsequent use of tools from the arithmetic of Abelian varieties.
Accepté le :
Publié le :
Pietro Corvaja 1 ; Umberto Zannier 2
@article{CRMATH_2002__334_4_267_0, author = {Pietro Corvaja and Umberto Zannier}, title = {A subspace theorem approach to integral points on curves}, journal = {Comptes Rendus. Math\'ematique}, pages = {267--271}, publisher = {Elsevier}, volume = {334}, number = {4}, year = {2002}, doi = {10.1016/S1631-073X(02)02240-9}, language = {en}, }
Pietro Corvaja; Umberto Zannier. A subspace theorem approach to integral points on curves. Comptes Rendus. Mathématique, Volume 334 (2002) no. 4, pp. 267-271. doi : 10.1016/S1631-073X(02)02240-9. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02240-9/
[1] An improvement of the quantitative subspace theorem, Compositio Math., Volume 101 (1996), pp. 225-311
[2] Endlichkeitssätzes für abelsche Varietäten über Zahlkörpern, Invent. Math., Volume 73 (1983), pp. 349-366
[3] Riemann Surfaces, Springer-Verlag, 1981
[4] Diophantine Geometry, Springer-Verlag, 2000
[5] Fundamentals of Diophantine Geometry, Springer-Verlag, 1982
[6] The quantitative subspace theorem for number fields, Compositio Math., Volume 82 (1992), pp. 245-273
[7] Diophantine Approximation, Lecture Notes in Math., 785, Springer-Verlag, 1987
[8] Diophantine Approximations and Diophantine Equations, Lecture Notes in Math., 1467, Springer-Verlag, 1991
[9] Lectures on the Mordell–Weil Theorem, Vieweg, 1989
[10] Über einige Anwendungen diophantischer Approximationen, Abh. Pr. Akad. Wiss., Volume 1 (1929) (Ges. Abh., I, 209–266)
[11] P. Vojta, Diophantine Approximations and Value Distribution theory, Lecture Notes in Math. 1239, Springer-Verlag
- A Schmidt-Nochka theorem for closed subschemes in subgeneral position, Journal für die Reine und Angewandte Mathematik, Volume 819 (2025), pp. 205-229 | DOI:10.1515/crelle-2024-0085 | Zbl:7982963
- A criterion for nondensity of integral points, Bulletin of the London Mathematical Society, Volume 56 (2024) no. 6, pp. 1939-1950 | DOI:10.1112/blms.13035 | Zbl:7922696
- Urata's theorem in the logarithmic case and applications to integral points, Bulletin of the London Mathematical Society, Volume 54 (2022) no. 5, pp. 1772-1790 | DOI:10.1112/blms.12655 | Zbl:1521.14047
- Lang-Vojta conjecture over function fields for surfaces dominating
, European Journal of Mathematics, Volume 8 (2022) no. 2, pp. 573-610 | DOI:10.1007/s40879-021-00502-8 | Zbl:1498.14061 - Integral points on curves
, Mathematische Zeitschrift, Volume 301 (2022) no. 4, pp. 3609-3616 | DOI:10.1007/s00209-022-03030-7 | Zbl:1495.11076 - On arithmetic inequalities for points of bounded degree, Research in Number Theory, Volume 7 (2021) no. 1, p. 14 (Id/No 1) | DOI:10.1007/s40993-020-00226-w | Zbl:1506.11101
- Diophantine approximation, Sugaku Expositions, Volume 34 (2021) no. 2, pp. 205-229 | DOI:10.1090/suga/463 | Zbl:1489.11102
- Hyperbolicity of varieties of log general type, Arithmetic geometry of logarithmic pairs and hyperbolicity of moduli spaces. Hyperbolicity in Montréal. Based on three workshops, Montréal, Canada, 2018–2019, Cham: Springer, 2020, pp. 197-247 | DOI:10.1007/978-3-030-49864-1_4 | Zbl:1470.11179
- On the degeneracy of integral points and entire curves in the complement of nef effective divisors, Journal of Number Theory, Volume 217 (2020), pp. 301-319 | DOI:10.1016/j.jnt.2020.05.013 | Zbl:1456.11119
- A Cartan's second main theorem approach in Nevanlinna theory, Acta Mathematica Sinica. English Series, Volume 34 (2018) no. 8, pp. 1208-1224 | DOI:10.1007/s10114-018-7367-4 | Zbl:1407.32006
- On a general Diophantine inequality, Functiones et Approximatio. Commentarii Mathematici, Volume 56 (2017) no. 2, pp. 143-163 | DOI:10.7169/facm/1599 | Zbl:1432.11101
- On the Schmidt subspace theorem for algebraic points, Duke Mathematical Journal, Volume 163 (2014) no. 15, pp. 2841-2885 | DOI:10.1215/00127094-2827017 | Zbl:1321.11073
- On some applications of Diophantine approximations. (A translation of Carl Ludwig Siegel's “Über einige Anwendungen diophantischer Approximationen” by Clemens Fuchs)., Quaderni. Scuola Normale Superiore di Pisa. Monographs, 2, Pisa: Edizioni della Normale, 2014 | DOI:10.1007/978-88-7642-520-2 | Zbl:1311.11006
- Essentially large divisors and their arithmetic and function-theoretic inequalities, The Asian Journal of Mathematics, Volume 16 (2012) no. 3, pp. 387-407 | DOI:10.4310/ajm.2012.v16.n3.a2 | Zbl:1320.11058
- On the nondensity of integral points, Duke Mathematical Journal, Volume 158 (2011) no. 1, pp. 13-27 | DOI:10.1215/00127094-1276292 | Zbl:1217.14020
- Generalizations of rigid analytic Picard theorems, Proceedings of the American Mathematical Society, Volume 138 (2010) no. 1, pp. 133-139 | DOI:10.1090/s0002-9939-09-10038-2 | Zbl:1183.32012
- Generalizations of Siegel's and Picard's theorems, Annals of Mathematics. Second Series, Volume 170 (2009) no. 2, pp. 609-655 | DOI:10.4007/annals.2009.170.609 | Zbl:1250.11067
- Dyson's theorem for curves, Journal of Number Theory, Volume 129 (2009) no. 1, pp. 36-58 | DOI:10.1016/j.jnt.2008.09.005 | Zbl:1242.11043
- Applications of the subspace theorem to certain Diophantine problems. A survey of some recent results, Diophantine approximation. Festschrift for Wolfgang Schmidt. Based on lectures given at a conference at the Erwin Schrödinger Institute, Vienna, Austria, 2003, Wien: Springer, 2008, pp. 161-174 | DOI:10.1007/978-3-211-74280-8_8 | Zbl:1245.11086
- On the integral points on certain algebraic varieties, Proceedings of the 4th European congress of mathematics (ECM), Stockholm, Sweden, June 27–July 2, 2004, Zürich: European Mathematical Society (EMS), 2005, pp. 529-546 | Zbl:1079.14028
- On integral points on surfaces, Annals of Mathematics. Second Series, Volume 160 (2004) no. 2, pp. 705-726 | DOI:10.4007/annals.2004.160.705 | Zbl:1146.11035
- On the number of integral points on algebraic curves, Journal für die Reine und Angewandte Mathematik, Volume 565 (2003), pp. 27-42 | DOI:10.1515/crll.2003.103 | Zbl:1153.11315
Cité par 22 documents. Sources : zbMATH
Commentaires - Politique