We announce a result on the existence of a unique local solution to a stochastic geometric wave equation on the one dimensional Minkowski space
Révisé le :
Accepté le :
Publié le :
Zdzisław Brzeźniak 1 ; Nimit Rana 1

@article{CRMATH_2020__358_6_633_0, author = {Zdzis{\l}aw Brze\'zniak and Nimit Rana}, title = {Low regularity solutions to the stochastic geometric wave equation driven by a fractional {Brownian} sheet}, journal = {Comptes Rendus. Math\'ematique}, pages = {633--639}, publisher = {Acad\'emie des sciences, Paris}, volume = {358}, number = {6}, year = {2020}, doi = {10.5802/crmath.38}, language = {en}, }
TY - JOUR AU - Zdzisław Brzeźniak AU - Nimit Rana TI - Low regularity solutions to the stochastic geometric wave equation driven by a fractional Brownian sheet JO - Comptes Rendus. Mathématique PY - 2020 SP - 633 EP - 639 VL - 358 IS - 6 PB - Académie des sciences, Paris DO - 10.5802/crmath.38 LA - en ID - CRMATH_2020__358_6_633_0 ER -
%0 Journal Article %A Zdzisław Brzeźniak %A Nimit Rana %T Low regularity solutions to the stochastic geometric wave equation driven by a fractional Brownian sheet %J Comptes Rendus. Mathématique %D 2020 %P 633-639 %V 358 %N 6 %I Académie des sciences, Paris %R 10.5802/crmath.38 %G en %F CRMATH_2020__358_6_633_0
Zdzisław Brzeźniak; Nimit Rana. Low regularity solutions to the stochastic geometric wave equation driven by a fractional Brownian sheet. Comptes Rendus. Mathématique, Volume 358 (2020) no. 6, pp. 633-639. doi : 10.5802/crmath.38. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.38/
[1] Strong solutions to stochastic wave equations with values in Riemannian manifolds, J. Funct. Anal., Volume 253 (2007) no. 2, pp. 449-481 | DOI | MR | Zbl
[2] Weak solutions to stochastic wave equations with values in Riemannian manifolds, Commun. Partial Differ. Equations, Volume 36 (2011) no. 9, pp. 1624-1653 | DOI | MR
[3] Stochastic geometric wave equations with values in compact Riemannian homogeneous spaces, Ann. Probab., Volume 41 (2013) no. 3B, pp. 1938-1977 | DOI | MR | Zbl
[4] Tensor Gaussian measures on
[5] On fractional Brownian processes, Potential Anal., Volume 10 (1999) no. 3, pp. 273-288 | DOI | MR | Zbl
[6] The Cauchy problem for periodic semilinear PDE in space variables, Séminaire Bourbaki, Vol. 1994/95 (Astérisque), Volume 237, Société Mathématique de France, 1996, pp. 163-187 (Exp. no. 796) | Numdam | Zbl
[7] Rough evolution equations, Ann. Probab., Volume 38 (2010) no. 1, pp. 1-75 | DOI | MR | Zbl
[8] Local and global well-posedness of wave maps on
[9] Well-posedness for nonlinear Dirac equations in one dimension, Kyoto J. Math., Volume 50 (2010) no. 2, pp. 403-451 | DOI | MR | Zbl
[10] Rough differential equations driven by signals in Besov spaces, J. Differ. Equations, Volume 260 (2016) no. 6, pp. 5202-5249 | DOI | MR | Zbl
[11] The
[12] Theory of function spaces, Modern Birkhäuser Classics, Birkhäuser, 2010 (reprint of the 1983 original) | Zbl
[13] An introduction to stochastic partial differential equations, École d’été de probabilités de Saint-Flour XIV-1984 (Lecture Notes in Mathematics), Volume 1180, Springer, 1984, pp. 265-439 | DOI | Zbl
- The wave maps equation and Brownian paths, Communications in Mathematical Physics, Volume 405 (2024) no. 3, p. 115 (Id/No 60) | DOI:10.1007/s00220-023-04885-5 | Zbl:1534.35261
- Non-linear Young equations in the plane and pathwise regularization by noise for the stochastic wave equation, Stochastic and Partial Differential Equations. Analysis and Computations, Volume 12 (2024) no. 2, pp. 857-897 | DOI:10.1007/s40072-023-00295-9 | Zbl:1541.60052
Cité par 2 documents. Sources : zbMATH
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier