Comptes Rendus
Équations aux dérivées partielles, Probabilités
Low regularity solutions to the stochastic geometric wave equation driven by a fractional Brownian sheet
Comptes Rendus. Mathématique, Volume 358 (2020) no. 6, pp. 633-639.

We announce a result on the existence of a unique local solution to a stochastic geometric wave equation on the one dimensional Minkowski space 1+1 with values in an arbitrary compact Riemannian manifold. We consider a rough initial data in the sense that its regularity is lower than the energy critical.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.38

Zdzisław Brzeźniak 1 ; Nimit Rana 1

1 Department of Mathematics, The University of York, Heslington, York, UK
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2020__358_6_633_0,
     author = {Zdzis{\l}aw Brze\'zniak and Nimit Rana},
     title = {Low regularity solutions to the stochastic geometric wave equation driven by a fractional {Brownian} sheet},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {633--639},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {358},
     number = {6},
     year = {2020},
     doi = {10.5802/crmath.38},
     language = {en},
}
TY  - JOUR
AU  - Zdzisław Brzeźniak
AU  - Nimit Rana
TI  - Low regularity solutions to the stochastic geometric wave equation driven by a fractional Brownian sheet
JO  - Comptes Rendus. Mathématique
PY  - 2020
SP  - 633
EP  - 639
VL  - 358
IS  - 6
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.38
LA  - en
ID  - CRMATH_2020__358_6_633_0
ER  - 
%0 Journal Article
%A Zdzisław Brzeźniak
%A Nimit Rana
%T Low regularity solutions to the stochastic geometric wave equation driven by a fractional Brownian sheet
%J Comptes Rendus. Mathématique
%D 2020
%P 633-639
%V 358
%N 6
%I Académie des sciences, Paris
%R 10.5802/crmath.38
%G en
%F CRMATH_2020__358_6_633_0
Zdzisław Brzeźniak; Nimit Rana. Low regularity solutions to the stochastic geometric wave equation driven by a fractional Brownian sheet. Comptes Rendus. Mathématique, Volume 358 (2020) no. 6, pp. 633-639. doi : 10.5802/crmath.38. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.38/

[1] Zdzisław Brzeźniak; Martin Ondreját Strong solutions to stochastic wave equations with values in Riemannian manifolds, J. Funct. Anal., Volume 253 (2007) no. 2, pp. 449-481 | DOI | MR | Zbl

[2] Zdzisław Brzeźniak; Martin Ondreját Weak solutions to stochastic wave equations with values in Riemannian manifolds, Commun. Partial Differ. Equations, Volume 36 (2011) no. 9, pp. 1624-1653 | DOI | MR

[3] Zdzisław Brzeźniak; Martin Ondreját Stochastic geometric wave equations with values in compact Riemannian homogeneous spaces, Ann. Probab., Volume 41 (2013) no. 3B, pp. 1938-1977 | DOI | MR | Zbl

[4] René Carmona; Simone Chevet Tensor Gaussian measures on Lp(E), J. Funct. Anal., Volume 33 (1979) no. 3, pp. 297-310 | DOI | MR | Zbl

[5] Denis Feyel; Arnaud de La Pradelle On fractional Brownian processes, Potential Anal., Volume 10 (1999) no. 3, pp. 273-288 | DOI | MR | Zbl

[6] Jean Ginibre The Cauchy problem for periodic semilinear PDE in space variables, Séminaire Bourbaki, Vol. 1994/95 (Astérisque), Volume 237, Société Mathématique de France, 1996, pp. 163-187 (Exp. no. 796) | Numdam | Zbl

[7] Massimiliano Gubinelli; Samy Tindel Rough evolution equations, Ann. Probab., Volume 38 (2010) no. 1, pp. 1-75 | DOI | MR | Zbl

[8] Markus Keel; Terence Tao Local and global well-posedness of wave maps on 1+1 for rough data, Int. Math. Res. Not., Volume 2998 (1998) no. 21, pp. 1117-1156 | DOI | MR | Zbl

[9] Shuji Machihara; Kenji Nakanishi; Kotaro Tsugawa Well-posedness for nonlinear Dirac equations in one dimension, Kyoto J. Math., Volume 50 (2010) no. 2, pp. 403-451 | DOI | MR | Zbl

[10] David J. Prömel; Mathias Trabs Rough differential equations driven by signals in Besov spaces, J. Differ. Equations, Volume 260 (2016) no. 6, pp. 5202-5249 | DOI | MR | Zbl

[11] Lluís Quer-Sardanyons; Samy Tindel The 1-d stochastic wave equation driven by a fractional Brownian sheet, Stochastic Processes Appl., Volume 117 (2007) no. 10, pp. 1448-1472 | DOI | MR | Zbl

[12] Hans Triebel Theory of function spaces, Modern Birkhäuser Classics, Birkhäuser, 2010 (reprint of the 1983 original) | Zbl

[13] John B. Walsh An introduction to stochastic partial differential equations, École d’été de probabilités de Saint-Flour XIV-1984 (Lecture Notes in Mathematics), Volume 1180, Springer, 1984, pp. 265-439 | DOI | Zbl

  • Bjoern Bringmann; Jonas Lührmann; Gigliola Staffilani The wave maps equation and Brownian paths, Communications in Mathematical Physics, Volume 405 (2024) no. 3, p. 115 (Id/No 60) | DOI:10.1007/s00220-023-04885-5 | Zbl:1534.35261
  • Florian Bechtold; Fabian A. Harang; Nimit Rana Non-linear Young equations in the plane and pathwise regularization by noise for the stochastic wave equation, Stochastic and Partial Differential Equations. Analysis and Computations, Volume 12 (2024) no. 2, pp. 857-897 | DOI:10.1007/s40072-023-00295-9 | Zbl:1541.60052

Cité par 2 documents. Sources : zbMATH

Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: