Comptes Rendus
Partial Differential Equations, Probability Theory
Low regularity solutions to the stochastic geometric wave equation driven by a fractional Brownian sheet
Comptes Rendus. Mathématique, Volume 358 (2020) no. 6, pp. 633-639.

We announce a result on the existence of a unique local solution to a stochastic geometric wave equation on the one dimensional Minkowski space 1+1 with values in an arbitrary compact Riemannian manifold. We consider a rough initial data in the sense that its regularity is lower than the energy critical.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/crmath.38

Zdzisław Brzeźniak 1; Nimit Rana 1

1 Department of Mathematics, The University of York, Heslington, York, UK
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRMATH_2020__358_6_633_0,
     author = {Zdzis{\l}aw Brze\'zniak and Nimit Rana},
     title = {Low regularity solutions to the stochastic geometric wave equation driven by a fractional {Brownian} sheet},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {633--639},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {358},
     number = {6},
     year = {2020},
     doi = {10.5802/crmath.38},
     language = {en},
}
TY  - JOUR
AU  - Zdzisław Brzeźniak
AU  - Nimit Rana
TI  - Low regularity solutions to the stochastic geometric wave equation driven by a fractional Brownian sheet
JO  - Comptes Rendus. Mathématique
PY  - 2020
SP  - 633
EP  - 639
VL  - 358
IS  - 6
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.38
LA  - en
ID  - CRMATH_2020__358_6_633_0
ER  - 
%0 Journal Article
%A Zdzisław Brzeźniak
%A Nimit Rana
%T Low regularity solutions to the stochastic geometric wave equation driven by a fractional Brownian sheet
%J Comptes Rendus. Mathématique
%D 2020
%P 633-639
%V 358
%N 6
%I Académie des sciences, Paris
%R 10.5802/crmath.38
%G en
%F CRMATH_2020__358_6_633_0
Zdzisław Brzeźniak; Nimit Rana. Low regularity solutions to the stochastic geometric wave equation driven by a fractional Brownian sheet. Comptes Rendus. Mathématique, Volume 358 (2020) no. 6, pp. 633-639. doi : 10.5802/crmath.38. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.38/

[1] Zdzisław Brzeźniak; Martin Ondreját Strong solutions to stochastic wave equations with values in Riemannian manifolds, J. Funct. Anal., Volume 253 (2007) no. 2, pp. 449-481 | DOI | MR | Zbl

[2] Zdzisław Brzeźniak; Martin Ondreját Weak solutions to stochastic wave equations with values in Riemannian manifolds, Commun. Partial Differ. Equations, Volume 36 (2011) no. 9, pp. 1624-1653 | DOI | MR

[3] Zdzisław Brzeźniak; Martin Ondreját Stochastic geometric wave equations with values in compact Riemannian homogeneous spaces, Ann. Probab., Volume 41 (2013) no. 3B, pp. 1938-1977 | DOI | MR | Zbl

[4] René Carmona; Simone Chevet Tensor Gaussian measures on L p (E), J. Funct. Anal., Volume 33 (1979) no. 3, pp. 297-310 | DOI | MR | Zbl

[5] Denis Feyel; Arnaud de La Pradelle On fractional Brownian processes, Potential Anal., Volume 10 (1999) no. 3, pp. 273-288 | DOI | MR | Zbl

[6] Jean Ginibre The Cauchy problem for periodic semilinear PDE in space variables, Séminaire Bourbaki, Vol. 1994/95 (Astérisque), Volume 237, Société Mathématique de France, 1996, pp. 163-187 (Exp. no. 796) | Numdam | Zbl

[7] Massimiliano Gubinelli; Samy Tindel Rough evolution equations, Ann. Probab., Volume 38 (2010) no. 1, pp. 1-75 | DOI | MR | Zbl

[8] Markus Keel; Terence Tao Local and global well-posedness of wave maps on 1+1 for rough data, Int. Math. Res. Not., Volume 2998 (1998) no. 21, pp. 1117-1156 | DOI | MR | Zbl

[9] Shuji Machihara; Kenji Nakanishi; Kotaro Tsugawa Well-posedness for nonlinear Dirac equations in one dimension, Kyoto J. Math., Volume 50 (2010) no. 2, pp. 403-451 | DOI | MR | Zbl

[10] David J. Prömel; Mathias Trabs Rough differential equations driven by signals in Besov spaces, J. Differ. Equations, Volume 260 (2016) no. 6, pp. 5202-5249 | DOI | MR | Zbl

[11] Lluís Quer-Sardanyons; Samy Tindel The 1-d stochastic wave equation driven by a fractional Brownian sheet, Stochastic Processes Appl., Volume 117 (2007) no. 10, pp. 1448-1472 | DOI | MR | Zbl

[12] Hans Triebel Theory of function spaces, Modern Birkhäuser Classics, Birkhäuser, 2010 (reprint of the 1983 original) | Zbl

[13] John B. Walsh An introduction to stochastic partial differential equations, École d’été de probabilités de Saint-Flour XIV-1984 (Lecture Notes in Mathematics), Volume 1180, Springer, 1984, pp. 265-439 | DOI | Zbl

Cited by Sources:

Comments - Policy