In this note, we show that the Horn cone associated with symplectic eigenvalues admits the same inequalities as the classical Horn cone, except that the equality corresponding to
Révisé le :
Accepté le :
Publié le :
Paul-Emile Paradan 1

@article{CRMATH_2022__360_G10_1163_0, author = {Paul-Emile Paradan}, title = {The {Horn} cone associated with symplectic eigenvalues}, journal = {Comptes Rendus. Math\'ematique}, pages = {1163--1168}, publisher = {Acad\'emie des sciences, Paris}, volume = {360}, year = {2022}, doi = {10.5802/crmath.383}, language = {en}, }
Paul-Emile Paradan. The Horn cone associated with symplectic eigenvalues. Comptes Rendus. Mathématique, Volume 360 (2022), pp. 1163-1168. doi : 10.5802/crmath.383. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.383/
[1] Local systems on
[2] Variational principles for symplectic eigenvalues, Can. Math. Bull., Volume 64 (2021) no. 3, pp. 553-559 | DOI | MR | Zbl
[3] Restrictions de representations et projections d’orbites coadjointes (d’après Belkale, Kumar et Ressayre), 2011 (Séminaire Bourbaki, http://www.bourbaki.ens.fr/TEXTES/1043.pdf) | Zbl
[4] Finite and infinite dimensional generalizations of Klyachko’s theorem, Linear Algebra Appl., Volume 319 (2000) no. 1-3, pp. 3-22 | DOI | MR | Zbl
[5] Eigenvalues, invariant factors, highest weights, and Schubert calculus, Bull. Am. Math. Soc., Volume 37 (2000) no. 3, pp. 209-249 | DOI | MR | Zbl
[6] Eigenvalues of majorized Hermitian matrices and Littlewood-Richardson coefficients, Linear Algebra Appl., Volume 319 (2000) no. 1-3, pp. 23-36 | DOI | MR | Zbl
[7] Additivity and multiplicativity properties of some Gaussian channels for Gaussian inputs, Phys. Rev. A, Volume 73 (2006) no. 1, 012330, 9 pages | DOI | Zbl
[8] Derivatives of symplectic eigenvalues and a Lidskii type theorem, Can. J. Math., Volume 74 (2020) no. 2, pp. 457-485 | DOI | MR | Zbl
[9] Convexity properties of the moment mapping III, Invent. Math., Volume 77 (1984), pp. 547-552 | DOI | MR | Zbl
[10] Stable bundles, representation theory and Hermitian operators, Sel. Math., New Ser., Volume 4 (1998) no. 3, pp. 419-445 | DOI | MR | Zbl
[11] The honeycomb model of
[12] Non-Abelian convexity by symplectic cuts, Topology, Volume 37 (1998) no. 2, pp. 245-259 | DOI | Zbl
[13] Invariant convex cones and causality in semisimple Lie algebras and groups, J. Funct. Anal, Volume 43 (1981), pp. 313-359 | DOI | MR | Zbl
[14] Determination of invariant convex cones in simple Lie algebras, Ark. Mat., Volume 21 (1983), pp. 217-228 | DOI | MR | Zbl
[15] Horn problem for quasi-hermitian Lie groups, J. Inst. Math. Jussieu (2022), pp. 1-27 | DOI
[16] Invariant convex cones and orderings in Lie groups, Funct. Anal. Appl., Volume 14 (1980), pp. 1-10 | DOI | MR | Zbl
[17] Poisson geometry of discrete series orbits and momentum convexity for noncompact group actions, Lett. Math. Phys., Volume 56 (2001) no. 1, pp. 17-30 | DOI | MR | Zbl
[18] On the algebraic problem concerning the normal forms of linear dynamical systems, Am. J. Math., Volume 58 (1936), pp. 141-163 | DOI | MR | Zbl
Cité par Sources :
Commentaires - Politique