In this paper, we disprove a recent monotonicity conjecture of C. Procesi on the generating function for monotone walks on the symmetric group, an object which is equivalent to the Weingarten function of the unitary group.
Accepted:
Published online:
Maciej Dołȩga 1; Jonathan Novak 2
@article{CRMATH_2022__360_G10_1169_0, author = {Maciej Do{\l}\c{e}ga and Jonathan Novak}, title = {Procesi{\textquoteright}s {Conjecture} on the {Formanek-Weingarten} {Function} is {False}}, journal = {Comptes Rendus. Math\'ematique}, pages = {1169--1172}, publisher = {Acad\'emie des sciences, Paris}, volume = {360}, year = {2022}, doi = {10.5802/crmath.391}, language = {en}, }
Maciej Dołȩga; Jonathan Novak. Procesi’s Conjecture on the Formanek-Weingarten Function is False. Comptes Rendus. Mathématique, Volume 360 (2022), pp. 1169-1172. doi : 10.5802/crmath.391. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.391/
[1] Parking functions of types A and B, Electron. J. Comb., Volume 9 (2002) no. 1, N7, 5 pages | MR | Zbl
[2] The Weingarten calculus (2021) (https://arxiv.org/abs/2109.14890, to be pusblished in Not. Amer. Math. Soc.)
[3] Jucys–Murphy elements and unitary matrix integrals, Int. Math. Res. Not., Volume 2013 (2013) no. 2, pp. 362-397 | DOI | MR | Zbl
[4] Jucys-Murphy elements and the Weingarten function, Noncommutative harmonic analysis with applications to probability. II: Papers presented at the 11th workshop, Bȩdlewo, Poland, August 17–23, 2008 (Banach Center Publications), Volume 89, Polish Academy of Sciences, 2010, pp. 231-235 | DOI | MR | Zbl
[5] A note on the Formanek Weingarten function, Note Mat., Volume 41 (2021) no. 1, pp. 69-110 | MR | Zbl
[6] Parking functions and noncrossing partitions, Electron. J. Comb., Volume 4 (1997) no. 2, R20, 14 pages | MR | Zbl
[7] Enumerative Combinatorics. Volume 2, Cambridge Studies in Advanced Mathematics, 62, Cambridge University Press, 1999 | DOI | Zbl
Cited by Sources:
Comments - Policy