We prove that every Hassett’s Noether–Lefschetz divisor of special cubic fourfolds contains a union of three subvarieties parametrizing rational cubic fourfolds, of codimension-two in the moduli space of smooth cubic fourfolds.
Nous prouvons que chaque diviseur de Hassett–Noether–Lefschetz de cubiques spéciales de dimension 4 contient une union de trois sous-variétés paramétrant des cubiques rationnelles de dimension 4, de codimension deux dans l’espace de modules des cubiques lisses de dimension 4.
Accepted:
Published online:
Song Yang 1; Xun Yu 1
@article{CRMATH_2020__358_2_129_0, author = {Song Yang and Xun Yu}, title = {Rational cubic fourfolds in {Hassett} divisors}, journal = {Comptes Rendus. Math\'ematique}, pages = {129--137}, publisher = {Acad\'emie des sciences, Paris}, volume = {358}, number = {2}, year = {2020}, doi = {10.5802/crmath.4}, language = {en}, }
Song Yang; Xun Yu. Rational cubic fourfolds in Hassett divisors. Comptes Rendus. Mathématique, Volume 358 (2020) no. 2, pp. 129-137. doi : 10.5802/crmath.4. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.4/
[1] Cubic fourfolds fibered in sextic del Pezzo surfaces, Am. J. Math., Volume 141 (2019) no. 6, pp. 1479-1500 | DOI | MR | Zbl
[2] Hodge theory and derived categories of cubic fourfolds, Duke Math. J., Volume 163 (2014) no. 10, pp. 1885-1927 | DOI | MR | Zbl
[3] Cubic fourfolds containing a plane and a quintic del Pezzo surface, Algebr. Geom., Volume 1 (2014) no. 2, pp. 181-193 | DOI | MR | Zbl
[4] Stability conditions in families (2019) (https://arxiv.org/abs/1902.08184v1)
[5] Stability conditions on Kuznetsov components (2019) (https://arxiv.org/abs/1703.10839v2)
[6] La variété des droites d’une hypersurface cubique de dimension , C. R. Math. Acad. Sci. Paris, Volume 301 (1985), pp. 703-706 | Zbl
[7] Some loci of rational cubic fourfolds, Math. Ann., Volume 373 (2019) no. 1-2, pp. 165-190 | DOI | MR | Zbl
[8] The intermediate Jacobian of the cubic threefold, Ann. Math., Volume 95 (1972), pp. 281-356 | DOI | MR | Zbl
[9] Sulle forme cubiche dello spazio a cinque dimensioni contenenti rigate razionali del ordine, Comment. Math. Helv., Volume 15 (1943), pp. 71-80 | DOI | MR | Zbl
[10] Some rational cubic fourfolds, J. Algebr. Geom., Volume 8 (1999) no. 1, pp. 103-114 | MR | Zbl
[11] Special cubic fourfolds, Compos. Math., Volume 120 (2000) no. 1, pp. 1-23 | DOI | MR | Zbl
[12] Cubic fourfolds, K3 surfaces, and rationality questions, Rationality problems in algebraic geometry (Lecture Notes in Mathematics), Volume 2172, Springer, 2016, pp. 29-66 | DOI | MR | Zbl
[13] The K3 category of a cubic fourfold, Compos. Math., Volume 153 (2017) no. 3, pp. 586-620 | DOI | MR | Zbl
[14] Hodge theory of cubic fourfolds, their Fano varieties, and associated K3 categories, Birational Geometry of Hypersurfaces (Lecture Notes of the Unione Matematica Italiana), Volume 26, Springer, 2019, pp. 165-198 | DOI
[15] Specialization of birational types, Invent. Math., Volume 217 (2019) no. 2, pp. 415-432 | DOI | MR | Zbl
[16] Derived categories of cubic fourfolds, Cohomological and geometric approaches to rationality problems. New Perspectives (Progress in Mathematics), Volume 282, Birkhäuser, 2010, pp. 219-243 | DOI | MR | Zbl
[17] The moduli space of cubic fourfolds via the period map, Ann. Math., Volume 172 (2010) no. 1, pp. 673-711 | DOI | MR | Zbl
[18] The period map for cubic fourfolds, Invent. Math., Volume 177 (2009) no. 1, pp. 213-233 | DOI | MR | Zbl
[19] Integral symmetric bilinear forms and some of their applications, Math. USSR, Izv., Volume 14 (1980), pp. 103-167 | DOI | Zbl
[20] Explicit rationality of some cubic fourfolds (2018) (https://arxiv.org/abs/1811.03502v1)
[21] Congruences of -secant conics and the rationality of some admissible cubic fourfolds, Duke Math. J., Volume 168 (2019) no. 5, pp. 849-865 | DOI | MR | Zbl
[22] Trisecant Flops, their associated K3 surfaces and the rationality of some Fano fourfolds (2019) (https://arxiv.org/abs/1909.01263v2)
[23] A course in arithmetic, Graduate Texts in Mathematics, 7, Springer, 1973 | MR | Zbl
[24] Théorème de Torelli pour les cubiques de , Invent. Math., Volume 86 (1986), pp. 577-601 | DOI | Zbl
[25] Some aspects of the Hodge conjecture, Jpn. J. Math., Volume 2 (2007) no. 2, pp. 261-296 | DOI | MR | Zbl
Cited by Sources:
Comments - Policy