Logarithmic derivative of the multiple gamma function is known as the multiple psi function. In this work -analogue of multiple psi functions of order have been considered. Subadditive, superadditive and convexity properties of higher order derivatives of these functions are derived. Some related inequalities for these functions and their ratios are also obtained.
La dérivée logarithmique de la fonction gamma multiple est connue comme la fonction psi multiple. Dans ce travail, des q-analogues de fonctions psi multiples d’ordre n ont été considérés. Des propriétés de sous-additivité, superadditivité et convexité des dérivées d’ordre supérieur de ces fonctions en découlent. Certaines inégalités apparentées sont également obtenues pour ces fonctions et leur rapports.
Revised:
Accepted:
Published online:
Sourav Das 1
@article{CRMATH_2020__358_3_327_0, author = {Sourav Das}, title = {Inequalities {Involving} $q${-Analogue} of {Multiple} {Psi} {Functions}}, journal = {Comptes Rendus. Math\'ematique}, pages = {327--332}, publisher = {Acad\'emie des sciences, Paris}, volume = {358}, number = {3}, year = {2020}, doi = {10.5802/crmath.44}, language = {en}, }
Sourav Das. Inequalities Involving $q$-Analogue of Multiple Psi Functions. Comptes Rendus. Mathématique, Volume 358 (2020) no. 3, pp. 327-332. doi : 10.5802/crmath.44. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.44/
[1] Sharp inequalities for the diagramma and polygamma functions, Forum Math., Volume 16 (2004) no. 2, pp. 181-221 | Zbl
[2] Sub- and superadditive properties of Euler’s gamma function, Proc. Am. Math. Soc., Volume 135 (2007) no. 11, pp. 3641-3648 | DOI | MR | Zbl
[3] A subadditive property of the gamma function, J. Math. Anal. Appl., Volume 285 (2003) no. 2, pp. 564-577 | DOI | MR | Zbl
[4] The theory of the G-function, Q. J. Math, Volume 31 (1899), pp. 264-314 | Zbl
[5] On the theory of the multiple Gamma function, Cambr. Trans., Volume 19 (1904), pp. 374-439 | Zbl
[6] Monotonicity properties of -digamma and -trigamma functions, J. Approx. Theory, Volume 192 (2015), pp. 336-346 | DOI | MR | Zbl
[7] Multiple gamma functions and their applications, Analytic number theory, approximation theory, and special functions, Springer, 2014, pp. 93-129 | DOI | Zbl
[8] The -deformed gamma function and -deformed polygamma function, Bull. Korean Math. Soc., Volume 51 (2014) no. 4, pp. 1155-1161 | DOI | MR | Zbl
[9] The additivity of polygamma functions, Filomat, Volume 29 (2015) no. 5, pp. 1063-1066 | MR | Zbl
[10] On -functions and a certain difference operator, Trans. R. Soc. Edinb., Volume 46 (1908) no. 2, pp. 253-281 | DOI
[11] On a -definite integrals, Quart. J., Volume 41 (1910), pp. 193-203 | Zbl
[12] Some inequalities for the -digamma function, JIPAM, J. Inequal. Pure Appl. Math., Volume 10 (2009) no. 1, 12, 8 pages | MR | Zbl
[13] On Barnes’ multiple zeta and gamma functions, Adv. Math., Volume 156 (2000) no. 1, pp. 107-132 | DOI | MR | Zbl
[14] Zeta and -Zeta functions and associated series and integrals, Elsevier, 2012 | Zbl
[15] The multiple gamma function and its -analogue, Quantum groups and quantum spaces (Warsaw, 1995) (Banach Center Publications), Volume 40, Polish Academy of Sciences, 1995, pp. 429-441 | Zbl
[16] L’équation fonctionnelle de la fonction zeta de Selberg de groupe modulaire , Journees arithmétiques de Luminy (1978) (Astérisque), Volume 61, Société Mathématique de France, 1979, pp. 235-249 | Numdam | Zbl
Cited by Sources:
Comments - Policy