Soit un groupe réductif connexe sur un corps de nombres , et soit un ensemble (fini ou infini) de places de . On donne une condition nécessaire et suffisante pour la surjectivité de l’application de localisation de vers la « somme directe » des ensembles , où parcourt . Dans les appendices on donne une nouvelle construction de la cohomologie galoisienne abélienne d’un groupe réductif sur un corps de caractéristique quelconque.
Let be a connected reductive group over a number field , and let be a set (finite or infinite) of places of . We give a necessary and sufficient condition for the surjectivity of the localization map from to the “direct sum” of the sets where runs over . In the appendices, we give a new construction of the abelian Galois cohomology of a reductive group over a field of arbitrary characteristic.
Révisé le :
Accepté le :
Publié le :
Mikhail Borovoi 1
@article{CRMATH_2023__361_G9_1401_0, author = {Mikhail Borovoi}, title = {Criterion for surjectivity of localization in {Galois} cohomology of a reductive group over a number field}, journal = {Comptes Rendus. Math\'ematique}, pages = {1401--1414}, publisher = {Acad\'emie des sciences, Paris}, volume = {361}, year = {2023}, doi = {10.5802/crmath.455}, language = {en}, }
TY - JOUR AU - Mikhail Borovoi TI - Criterion for surjectivity of localization in Galois cohomology of a reductive group over a number field JO - Comptes Rendus. Mathématique PY - 2023 SP - 1401 EP - 1414 VL - 361 PB - Académie des sciences, Paris DO - 10.5802/crmath.455 LA - en ID - CRMATH_2023__361_G9_1401_0 ER -
Mikhail Borovoi. Criterion for surjectivity of localization in Galois cohomology of a reductive group over a number field. Comptes Rendus. Mathématique, Volume 361 (2023), pp. 1401-1414. doi : 10.5802/crmath.455. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.455/
[1] Cohomology of groups, Global class field theory (Proc. Instructional Conf., Brighton, 1965), Thompson, 196, pp. 94-115 | Zbl
[2] Existence of discrete cocompact subgroups of reductive groups over local fields, J. Reine Angew. Math., Volume 298 (1978), pp. 53-64 | MR | Zbl
[3] Compléments à l’article: “Groupes réductifs”, Publ. Math., Inst. Hautes Étud. Sci., Volume 41 (1972), pp. 253-276 | DOI | Numdam | Zbl
[4] Is Deligne’s braiding functorial? https://mathoverflow.net/q/436002 (version: 2022-12-06)
[5] Abelian Galois cohomology of reductive groups, Memoirs of the American Mathematical Society, 626, American Mathematical Society, 1998
[6] Galois cohomology and component group of a real reductive group (2021) (https://arxiv.org/abs/2110.13062, to appear in Isr. J. Math.)
[7] Letter to Borovoi of May 27, 1991
[8] Résolutions flasques des groupes linéaires connexes, J. Reine Angew. Math., Volume 618 (2008), pp. 77-133 | Zbl
[9] Modules croisés généralisés de longueur 2, J. Pure Appl. Algebra, Volume 34 (1984) no. 2-3, pp. 155-178 | DOI | MR | Zbl
[10] Pseudo-reductive groups, New Mathematical Monographs, Cambridge University Press, 2015 | DOI
[11] Variétés de Shimura: interprétation modulaire, et techniques de construction de modèles canoniques, Automorphic forms, representations and -functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977) (Proceedings of Symposia in Pure Mathematics), Volume 33, American Mathematical Society, 1979, pp. 247-289 | Zbl
[12] Abelian class groups of reductive group schemes, Isr. J. Math., Volume 196 (2013) no. 1, pp. 175-214 | DOI | MR | Zbl
[13] Stable trace formula: elliptic singular terms, Math. Ann., Volume 275 (1986) no. 3, pp. 365-399 | DOI | MR | Zbl
[14] Cohomologie, stabilisation et changement de base, Astérisque, 257, Société Mathématique de France, 1999 (Appendix A by L. Clozel and Labesse, and Appendix B by Breen, L.) | Numdam | MR
[15] On abelianized cohomology for reductive groups. Appendix B to the paper by E. Lapid and Z. Mao “A conjecture on Whittaker-Fourier coefficients of cusp forms”, J. Number Theory, Volume 146 (2015), pp. 448-505
[16] K-theory and algebraic groups, European Congress of Mathematics, Vol. II (Budapest, 1996) (Progress in Mathematics), Volume 1996, Birkhäuser, 1998, pp. 43-72 | DOI | Zbl
[17] Group cohomology with coefficients in a crossed module, J. Inst. Math. Jussieu, Volume 10 (2011) no. 2, pp. 359-404 | DOI | MR | Zbl
[18] Is this exact sequence known? https://mathoverflow.net/q/429772 (version: 2022-09-04)
[19] On the existence of isotropic forms of semi-simple algebraic groups over number fields with prescribed local behavior, Adv. Math., Volume 207 (2006) no. 2, pp. 646-660 | DOI | MR | Zbl
[20] Galois cohomology, Springer, 1997 | DOI | Numdam
[21] An introduction to homological algebra, Cambridge Studies in Advanced Mathematics, 38, Cambridge University Press, 1994 | DOI | Numdam
Cité par Sources :
Commentaires - Politique