[Conditions nécessaires de positivité pour les coefficients de Littlewood–Richardson et du pléthysme]
Nous donnons des conditions nécessaires de positivité pour les coefficients de Littlewood–Richardson et pour les coefficients SXP. Nous en déduisons la condition nécessaire de positivité suivante pour les coefficients du pléthysme : si apparaît dans la décomposition en irréductibles de , alors le diagramme de est contenu dans celui de .
We give necessary conditions for the positivity of Littlewood–Richardson coefficients and SXP coefficients. We deduce necessary conditions for the positivity of the plethystic coefficients. Explicitly, our main result states that if appears as a summand in the decomposition into irreducibles of , then ’s diagram is contained in ’s diagram.
Révisé le :
Accepté le :
Publié le :
Álvaro Gutiérrez 1 ; Mercedes H. Rosas 1
@article{CRMATH_2023__361_G7_1163_0, author = {\'Alvaro Guti\'errez and Mercedes H. Rosas}, title = {Necessary conditions for the positivity of {Littlewood{\textendash}Richardson} and plethystic coefficients}, journal = {Comptes Rendus. Math\'ematique}, pages = {1163--1173}, publisher = {Acad\'emie des sciences, Paris}, volume = {361}, year = {2023}, doi = {10.5802/crmath.468}, language = {en}, }
TY - JOUR AU - Álvaro Gutiérrez AU - Mercedes H. Rosas TI - Necessary conditions for the positivity of Littlewood–Richardson and plethystic coefficients JO - Comptes Rendus. Mathématique PY - 2023 SP - 1163 EP - 1173 VL - 361 PB - Académie des sciences, Paris DO - 10.5802/crmath.468 LA - en ID - CRMATH_2023__361_G7_1163_0 ER -
%0 Journal Article %A Álvaro Gutiérrez %A Mercedes H. Rosas %T Necessary conditions for the positivity of Littlewood–Richardson and plethystic coefficients %J Comptes Rendus. Mathématique %D 2023 %P 1163-1173 %V 361 %I Académie des sciences, Paris %R 10.5802/crmath.468 %G en %F CRMATH_2023__361_G7_1163_0
Álvaro Gutiérrez; Mercedes H. Rosas. Necessary conditions for the positivity of Littlewood–Richardson and plethystic coefficients. Comptes Rendus. Mathématique, Volume 361 (2023), pp. 1163-1173. doi : 10.5802/crmath.468. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.468/
[1] Reduced Kronecker coefficients and counter-examples to Mulmuley’s strong saturation conjecture SH, Comput. Complexity, Volume 18 (2009) no. 4, pp. 577-600 (with an appendix by Ketan Mulmuley) | DOI | MR | Zbl
[2] The stability of the Kronecker product of Schur functions, J. Algebra, Volume 331 (2011), pp. 11-27 | DOI | MR | Zbl
[3] Deciding positivity of Littlewood–Richardson coefficients, SIAM J. Discrete Math., Volume 27 (2013) no. 4, pp. 1639-1681 | DOI | MR | Zbl
[4] Algorithms for plethysm, Combinatorics and algebra (Boulder, Colo., 1983) (Contemporary Mathematics), Volume 34, American Mathematical Society, 1984, pp. 109-153 | DOI | MR | Zbl
[5] The mystery of plethysm coefficients (2022) | arXiv
[6] On the Kronecker product of characters, J. Algebra, Volume 154 (1993) no. 1, pp. 125-140 | DOI | MR | Zbl
[7] The computational complexity of plethysm coefficients, Comput. Complexity, Volume 29 (2020) no. 2, 8, 43 pages | DOI | MR | Zbl
[8] Young tableaux. With applications to representation theory and geometry, London Mathematical Society Student Texts, 35, Cambridge University Press, 1997, x+260 pages | MR
[9] Representation theory. A first course, Readings in Mathematics, Graduate Texts in Mathematics, 129, Springer, 1991, xvi+551 pages | DOI | MR | Zbl
[10] On vanishing of Kronecker coefficients, Comput. Complexity, Volume 26 (2017) no. 4, pp. 949-992 | DOI | MR | Zbl
[11] The plethysm at hook and near-hook shapes, Electron. J. Comb., Volume 11 (2004) no. 1, 11, 26 pages | MR | Zbl
[12] Modular representations of symmetric groups, Proc. R. Soc. Lond., Ser. A, Volume 209 (1951), pp. 333-353 | DOI | MR | Zbl
[13] Symmetric functions and Hall polynomials, Oxford Classic Texts in the Physical Sciences, Clarendon Press, 2015, xii+475 pages (with contribution by A. V. Zelevinsky and a foreword by Richard Stanley, Reprint of the 2008 paperback edition) | MR
[14] Vector partition functions and Kronecker coefficients, J. Phys. A. Math. Gen., Volume 54 (2021) no. 20, 205204, 29 pages | DOI | MR | Zbl
[15] Geometric complexity theory. I. An approach to the P vs. NP and related problems, SIAM J. Comput., Volume 31 (2001) no. 2, pp. 496-526 | DOI | MR | Zbl
[16] On the complexity of computing Kronecker coefficients, Comput. Complexity, Volume 26 (2017) no. 1, pp. 1-36 | DOI | MR | Zbl
[17] Breaking down the reduced Kronecker coefficients, C. R. Math. Acad. Sci. Paris, Volume 358 (2020) no. 4, pp. 463-468 | DOI | Numdam | MR | Zbl
[18] The combinatorics of -hook Schur functions, Combinatorics and algebra (Boulder, Colo., 1983) (Contemporary Mathematics), Volume 34, American Mathematical Society, 1984, pp. 253-287 | DOI | MR | Zbl
[19] The Kronecker product of Schur functions indexed by two-row shapes or hook shapes, J. Algebr. Comb., Volume 14 (2001) no. 2, pp. 153-173 | DOI | MR | Zbl
[20] Enumerative combinatorics. Vol. 2, Cambridge Studies in Advanced Mathematics, 62, Cambridge University Press, 1999, xii+581 pages (with a foreword by Gian-Carlo Rota and Appendix 1 by Sergey Fomin) | DOI | MR
[21] A generalized SXP rule proved by bijections and involutions, Ann. Comb., Volume 22 (2018) no. 4, pp. 885-905 | DOI | MR | Zbl
[22] The first term in the expansion of plethysm of Schur functions, Discrete Math., Volume 246 (2002) no. 1-3, pp. 331-341 | DOI | MR | Zbl
Cité par Sources :
Commentaires - Politique