Our main result associates a family of congruences with each suitable system of nilpotent subgroups of a finite group. Using this result, we complete and correct the proof of a theorem of Hirsch concerning the class number of a finite group of odd order.
Revised:
Accepted:
Published online:
Keywords: Nilpotent systems of subgroups, congruences
Stefanos Aivazidis 1; Thomas Müller 2
CC-BY 4.0
@article{CRMATH_2023__361_G9_1585_0,
author = {Stefanos Aivazidis and Thomas M\"uller},
title = {Congruences associated with families of nilpotent subgroups and a theorem of {Hirsch}},
journal = {Comptes Rendus. Math\'ematique},
pages = {1585--1592},
year = {2023},
publisher = {Acad\'emie des sciences, Paris},
volume = {361},
doi = {10.5802/crmath.514},
language = {en},
}
TY - JOUR AU - Stefanos Aivazidis AU - Thomas Müller TI - Congruences associated with families of nilpotent subgroups and a theorem of Hirsch JO - Comptes Rendus. Mathématique PY - 2023 SP - 1585 EP - 1592 VL - 361 PB - Académie des sciences, Paris DO - 10.5802/crmath.514 LA - en ID - CRMATH_2023__361_G9_1585_0 ER -
Stefanos Aivazidis; Thomas Müller. Congruences associated with families of nilpotent subgroups and a theorem of Hirsch. Comptes Rendus. Mathématique, Volume 361 (2023), pp. 1585-1592. doi: 10.5802/crmath.514
[1] Theory of Groups of Finite Order, Dover Publications, 1955 | MR
[2] A unimodality result in the enumeration of subgroups of a finite abelian group, Proc. Am. Math. Soc., Volume 101 (1987) no. 4, pp. 771-775 | Zbl | DOI | MR
[3] Fonctions de Möbius sur les groupes abeliens finis, Ann. Math., Volume 49 (1948), pp. 600-609 | DOI | Zbl
[4] Solvability of groups of odd order, Order, Volume 13 (1963), pp. 775-1029 | MR | Zbl
[5] A note on soluble groups, J. Lond. Math. Soc., Volume 3 (1928), pp. 98-105 | DOI | MR | Zbl
[6] The eulerian functions of a group, Q. J. Math., Oxf. Ser., Volume 7 (1936), pp. 134-151 | DOI
[7] On a theorem of Burnside, Q. J. Math., Volume 1 (1950), pp. 97-99 | DOI | MR | Zbl
[8] Two problems of finite groups with conjugate classes, J. Aust. Math. Soc., Volume 8 (1968), pp. 49-55 | DOI | MR | Zbl
[9] Zum Satz von Sylow, Math. Z., Volume 60 (1954), pp. 407-408 | DOI | MR | Zbl
Cited by Sources:
Comments - Policy
