Comptes Rendus
Geometry and Topology
Genus Zero Complete Maximal Maps and Maxfaces with an Arbitrary Number of Ends
Comptes Rendus. Mathématique, Volume 361 (2023), pp. 1683-1690.

We prove the existence of a genus-zero complete maximal map with a prescribed singularity set and an arbitrary number of simple and complete ends. We also discuss the conditions under which this maximal map can be made into a complete maxface.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/crmath.525
Classification: 53A35
Keywords: complete maxface, maximal map, zero mean curvature surfaces

Pradip Kumar 1; Sai Rasmi Ranjan Mohanty 1

1 Department of Mathematics, Shiv Nadar Institute of Eminence, Deemed to be University, Dadri 201314, Uttar Pradesh, India
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRMATH_2023__361_G10_1683_0,
     author = {Pradip Kumar and Sai Rasmi Ranjan Mohanty},
     title = {Genus {Zero} {Complete} {Maximal} {Maps} and {Maxfaces} with an {Arbitrary} {Number} of {Ends}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1683--1690},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {361},
     year = {2023},
     doi = {10.5802/crmath.525},
     language = {en},
}
TY  - JOUR
AU  - Pradip Kumar
AU  - Sai Rasmi Ranjan Mohanty
TI  - Genus Zero Complete Maximal Maps and Maxfaces with an Arbitrary Number of Ends
JO  - Comptes Rendus. Mathématique
PY  - 2023
SP  - 1683
EP  - 1690
VL  - 361
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.525
LA  - en
ID  - CRMATH_2023__361_G10_1683_0
ER  - 
%0 Journal Article
%A Pradip Kumar
%A Sai Rasmi Ranjan Mohanty
%T Genus Zero Complete Maximal Maps and Maxfaces with an Arbitrary Number of Ends
%J Comptes Rendus. Mathématique
%D 2023
%P 1683-1690
%V 361
%I Académie des sciences, Paris
%R 10.5802/crmath.525
%G en
%F CRMATH_2023__361_G10_1683_0
Pradip Kumar; Sai Rasmi Ranjan Mohanty. Genus Zero Complete Maximal Maps and Maxfaces with an Arbitrary Number of Ends. Comptes Rendus. Mathématique, Volume 361 (2023), pp. 1683-1690. doi : 10.5802/crmath.525. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.525/

[1] Francisco J. M. Estudillo; Alfonso Romero Generalized maximal surfaces in Lorentz–Minkowski space 𝕃 3 , Math. Proc. Camb. Philos. Soc., Volume 111 (1992) no. 3, pp. 515-524 | DOI | MR | Zbl

[2] Shoichi Fujimori; Wayne Rossman; Masaaki Umehara; Kotaro Yamada; Seong-Deog Yang New Maximal Surfaces in Minkowski 3-Space with Arbitrary Genus and Their Cousins in de Sitter 3-Space, Results Math., Volume 56 (2009) no. 1, p. 41 | DOI | MR | Zbl

[3] Thomas H. Gronwall On analytic functions of constant modulus on a given contour, Ann. Math., Volume 14 (1912) no. 1-4, pp. 72-80 | DOI | MR

[4] Taishi Imaizumi; Shin Kato Flux of simple ends of maximal surfaces in 2,1 , Hokkaido Math. J., Volume 37 (2008) no. 3, pp. 561-610 | DOI | MR | Zbl

[5] Luquésio P. Jorge; William H. Meeks The topology of complete minimal surfaces of finite total Gaussian curvature, Topology, Volume 22 (1983) no. 2, pp. 203-221 | DOI | MR | Zbl

[6] Young Wook Kim; Seong-Deog Yang Prescribing singularities of maximal surfaces via a singular Björling representation formula, J. Geom. Phys., Volume 57 (2007) no. 11, pp. 2167-2177 | DOI | Zbl

[7] Rafael López On the existence of spacelike constant mean curvature surfaces spanning two circular contours in Minkowski space, J. Geom. Phys., Volume 57 (2007) no. 11, pp. 2178-2186 | DOI | MR | Zbl

[8] Ando Naoya; Hamada Kohei; Hasimoto Kaname; Kato Shin Regularity of ends of zero mean curvature surfaces in 2,1 , J. Math. Soc. Japan, Volume 74 (2022) no. 4, pp. 1295-1334 | DOI | MR | Zbl

[9] Brad Osgood Old and New on the Schwarzian Derivative, Quasiconformal Mappings and Analysis: A Collection of Papers Honoring F.W. Gehring (Peter Duren; Juha Heinonen; Brad Osgood; Bruce Palka, eds.), Springer, 1998, pp. 275-308 | DOI | Zbl

[10] Masaaki Umehara; Kotaro Yamada Maximal surfaces with singularities in Minkowski space, Hokkaido Math. J., Volume 35 (2006) no. 1, pp. 13-40 | DOI | MR | Zbl

[11] Kichoon Yang Complete minimal surfaces of finite total curvature, Mathematics and its Applications, 294, Kluwer Academic Publishers, 1994, viii+157 pages | DOI | MR

Cited by Sources:

Comments - Policy