We prove the existence of a genus-zero complete maximal map with a prescribed singularity set and an arbitrary number of simple and complete ends. We also discuss the conditions under which this maximal map can be made into a complete maxface.
Revised:
Accepted:
Published online:
Keywords: complete maxface, maximal map, zero mean curvature surfaces
Pradip Kumar 1; Sai Rasmi Ranjan Mohanty 1
@article{CRMATH_2023__361_G10_1683_0, author = {Pradip Kumar and Sai Rasmi Ranjan Mohanty}, title = {Genus {Zero} {Complete} {Maximal} {Maps} and {Maxfaces} with an {Arbitrary} {Number} of {Ends}}, journal = {Comptes Rendus. Math\'ematique}, pages = {1683--1690}, publisher = {Acad\'emie des sciences, Paris}, volume = {361}, year = {2023}, doi = {10.5802/crmath.525}, language = {en}, }
TY - JOUR AU - Pradip Kumar AU - Sai Rasmi Ranjan Mohanty TI - Genus Zero Complete Maximal Maps and Maxfaces with an Arbitrary Number of Ends JO - Comptes Rendus. Mathématique PY - 2023 SP - 1683 EP - 1690 VL - 361 PB - Académie des sciences, Paris DO - 10.5802/crmath.525 LA - en ID - CRMATH_2023__361_G10_1683_0 ER -
Pradip Kumar; Sai Rasmi Ranjan Mohanty. Genus Zero Complete Maximal Maps and Maxfaces with an Arbitrary Number of Ends. Comptes Rendus. Mathématique, Volume 361 (2023), pp. 1683-1690. doi : 10.5802/crmath.525. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.525/
[1] Generalized maximal surfaces in Lorentz–Minkowski space , Math. Proc. Camb. Philos. Soc., Volume 111 (1992) no. 3, pp. 515-524 | DOI | MR | Zbl
[2] New Maximal Surfaces in Minkowski 3-Space with Arbitrary Genus and Their Cousins in de Sitter 3-Space, Results Math., Volume 56 (2009) no. 1, p. 41 | DOI | MR | Zbl
[3] On analytic functions of constant modulus on a given contour, Ann. Math., Volume 14 (1912) no. 1-4, pp. 72-80 | DOI | MR
[4] Flux of simple ends of maximal surfaces in , Hokkaido Math. J., Volume 37 (2008) no. 3, pp. 561-610 | DOI | MR | Zbl
[5] The topology of complete minimal surfaces of finite total Gaussian curvature, Topology, Volume 22 (1983) no. 2, pp. 203-221 | DOI | MR | Zbl
[6] Prescribing singularities of maximal surfaces via a singular Björling representation formula, J. Geom. Phys., Volume 57 (2007) no. 11, pp. 2167-2177 | DOI | Zbl
[7] On the existence of spacelike constant mean curvature surfaces spanning two circular contours in Minkowski space, J. Geom. Phys., Volume 57 (2007) no. 11, pp. 2178-2186 | DOI | MR | Zbl
[8] Regularity of ends of zero mean curvature surfaces in , J. Math. Soc. Japan, Volume 74 (2022) no. 4, pp. 1295-1334 | DOI | MR | Zbl
[9] Old and New on the Schwarzian Derivative, Quasiconformal Mappings and Analysis: A Collection of Papers Honoring F.W. Gehring (Peter Duren; Juha Heinonen; Brad Osgood; Bruce Palka, eds.), Springer, 1998, pp. 275-308 | DOI | Zbl
[10] Maximal surfaces with singularities in Minkowski space, Hokkaido Math. J., Volume 35 (2006) no. 1, pp. 13-40 | DOI | MR | Zbl
[11] Complete minimal surfaces of finite total curvature, Mathematics and its Applications, 294, Kluwer Academic Publishers, 1994, viii+157 pages | DOI | MR
Cited by Sources:
Comments - Policy