[Contrôle simultané de l’équation de la chaleur avec conditions aux limites de Dirichlet et Neumann]
Il est bien connu que l’équation de la chaleur avec aussi bien la condition au bord de Dirichlet que la condition de Neumann est contrôlable à dès que le contrôle agit sur un domain non trivial (i.e. de mesure positive). Dans cet article, nous montrons que pour tout couple de données initiales , le contrôle à peut être réalisé simultanément avec la même fonction de contrôle pour les deux équations.
It is well known that both the heat equation with Dirichlet or Neumann boundary conditions are null controlable as soon as the control acts in a non trivial domain (i.e. a set of positive measure). In this article, we show that for any couple of initial data we can achieve the null control for both equations (Dirichlet and Neumann boundary conditions respectively) simultaneously with the same control function for both equations.
Révisé le :
Accepté le :
Publié le :
Nicolas Burq 1 ; Ivan Moyano 2
@article{CRMATH_2024__362_G9_937_0, author = {Nicolas Burq and Ivan Moyano}, title = {Simultaneous control for the heat equation with {Dirichlet} and {Neumann} boundary conditions}, journal = {Comptes Rendus. Math\'ematique}, pages = {937--942}, publisher = {Acad\'emie des sciences, Paris}, volume = {362}, year = {2024}, doi = {10.5802/crmath.535}, language = {en}, }
TY - JOUR AU - Nicolas Burq AU - Ivan Moyano TI - Simultaneous control for the heat equation with Dirichlet and Neumann boundary conditions JO - Comptes Rendus. Mathématique PY - 2024 SP - 937 EP - 942 VL - 362 PB - Académie des sciences, Paris DO - 10.5802/crmath.535 LA - en ID - CRMATH_2024__362_G9_937_0 ER -
Nicolas Burq; Ivan Moyano. Simultaneous control for the heat equation with Dirichlet and Neumann boundary conditions. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 937-942. doi : 10.5802/crmath.535. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.535/
[1] Simultaneous Observability of Uncoupled Parabolic Systems (Available at SSRN: https://ssrn.com/abstract=4081112 or http://dx.doi.org/10.2139/ssrn.4081112) | DOI
[2] Minimal time for the null controllability of parabolic systems: the effect of the condensation index of complex sequences, J. Funct. Anal., Volume 267 (2014) no. 7, pp. 2077-2151 | DOI | Zbl
[3] Simultaneous temperature and flux controllability for heat equations with memory, Q. Appl. Math., Volume 71 (2013) no. 2, pp. 339-368 | DOI
[4] A block moment method to handle spectral condensation phenomenon in parabolic control problems, Ann. Henri Lebesgue, Volume 3 (2020), pp. 717-793 | DOI | Numdam | Zbl
[5] Propagation of smallness and control for heat equations., J. Eur. Math. Soc., Volume 25 (2023) no. 4, pp. 1349-1377 | DOI | Zbl
[6] Boundary controllability of parabolic coupled equations, J. Funct. Anal., Volume 259 (2010) no. 7, pp. 1720-1758 | DOI | Zbl
[7] Nodal sets of sums of eigenfunctions, Harmonic analysis and partial differential equations (Chicago, IL, 1996) (Chicago Lectures in Mathematics), University of Chicago Press, 1996, pp. 223-239 | Zbl
[8] Simultaneous global exact controllability of an arbitrary number of 1D bilinear Schrödinger equations, J. Math. Pures Appl., Volume 103 (2015) no. 1 | Zbl
Cité par Sources :
Commentaires - Politique