We show that the ordinal of the dynamical degrees of all birational maps of the complex projective plane is .
Nous démontrons que l’ordinal des degrés dynamiques de toutes les transformations birationnelles du plan projectif complexe est .
Revised:
Accepted:
Published online:
Keywords: Dynamical degree, rational projective surfaces, ordinals
Anna Bot 1

@article{CRMATH_2024__362_G2_117_0, author = {Anna Bot}, title = {The ordinal of dynamical degrees of birational maps of the projective plane}, journal = {Comptes Rendus. Math\'ematique}, pages = {117--134}, publisher = {Acad\'emie des sciences, Paris}, volume = {362}, year = {2024}, doi = {10.5802/crmath.540}, language = {en}, }
Anna Bot. The ordinal of dynamical degrees of birational maps of the projective plane. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 117-134. doi : 10.5802/crmath.540. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.540/
[1] Dynamics of rational surface automorphisms, Holomorphic dynamical systems (Lecture Notes in Mathematics), Volume 1998, Springer, 2010, pp. 57-104 | DOI | MR
[2] Dynamics of rational surface automorphisms: linear fractional recurrences, J. Geom. Anal., Volume 19 (2009) no. 3, pp. 553-583 | DOI | MR | Zbl
[3] Algebraic entropy, Commun. Math. Phys., Volume 204 (1999) no. 2, pp. 425-437 | DOI | MR | Zbl
[4] On plane Cremona transformations of fixed degree, J. Geom. Anal., Volume 25 (2015) no. 2, pp. 1108-1131 | DOI | MR | Zbl
[5] Dynamical degrees of birational transformations of projective surfaces, J. Am. Math. Soc., Volume 29 (2016) no. 2, pp. 415-471 | DOI | MR | Zbl
[6] Topologies and structures of the Cremona groups, Ann. Math., Volume 178 (2013) no. 3, pp. 1173-1198 | DOI | MR | Zbl
[7] Lie groups and Lie algebras. Chapters 4–6, Elements of Mathematics (Berlin), Springer, 2002, xii+300 pages (Translated from the 1968 French original by Andrew Pressley) | DOI | MR
[8] Theory of sets, Elements of Mathematics (Berlin), Springer, 2004, viii+414 pages (Reprint of the 1968 English translation) | DOI | MR
[9] Arithmetic of ordinals with applications to the theory of ordered Abelian groups, Bull. Am. Math. Soc., Volume 48 (1942), pp. 262-271 | DOI | MR | Zbl
[10] Automorphisms of rational surfaces with positive entropy, Indiana Univ. Math. J., Volume 60 (2011) no. 5, pp. 1589-1622 | DOI | MR | Zbl
[11] Cremona transformations, surface automorphisms, and plain cubics, Mich. Math. J., Volume 60 (2011) no. 2, pp. 409-440 (with an appendix by Igor Dolgachev) | DOI | MR | Zbl
[12] Dynamics of bimeromorphic maps of surfaces, Am. J. Math., Volume 123 (2001) no. 6, pp. 1135-1169 | DOI | MR | Zbl
[13] Point sets in projective spaces and theta functions, Astérisque, 165, Société Mathématique de France, 1988, 210 pages | Numdam | MR
[14] On the entropy of holomorphic maps, Enseign. Math., Volume 49 (2003) no. 3-4, pp. 217-235 | MR | Zbl
[15] Reflection groups and Coxeter groups, Cambridge Studies in Advanced Mathematics, 29, Cambridge University Press, 1990, xii+204 pages | DOI | MR
[16] Dynamics on blowups of the projective plane, Publ. Math., Inst. Hautes Étud. Sci. (2007) no. 105, pp. 49-89 | DOI | Numdam | MR | Zbl
[17] On rational surfaces. II, Mem. Coll. Sci., Univ. Kyoto, Ser. A, Volume 33 (1960/61), pp. 271-293 | DOI | MR | Zbl
[18] Rational surface automorphisms preserving cuspidal anticanonical curves, Math. Ann., Volume 365 (2016) no. 1-2, pp. 635-659 | DOI | MR | Zbl
[19] Rational surface automorphisms with positive entropy, Ann. Inst. Fourier, Volume 66 (2016) no. 1, pp. 377-432 | DOI | Numdam | MR | Zbl
[20] Remarks on the degree growth of birational transformations, Math. Res. Lett., Volume 25 (2018) no. 1, pp. 291-308 | DOI | MR | Zbl
[21] Periodic points of birational transformations on projective surfaces, Duke Math. J., Volume 164 (2015) no. 5, pp. 903-932 | DOI | MR | Zbl
[22] Volume growth and entropy, Isr. J. Math., Volume 57 (1987) no. 3, pp. 285-300 | DOI | MR
Cited by Sources:
Comments - Policy