[Volume infini et atomes au bas du spectre]
Soit un groupe algébrique réel simple de rang supérieur, ou plus généralement un groupe algébrique réel semi-simple sans facteurs de rang un et l’espace symétrique riemannien associé. Pour tout sous-groupe discret dense de Zariski , on prouve que si et seulement si aucune fonction propre de Laplacien positive appartient à , ou de manière équivalente, le bas du spectre n’est pas un atome de la mesure spectrale du Laplacien négatif. Cela contraste avec la situation de rang un où l’intégrabilité au carré de la fonction propre de base est déterminée par la taille de l’exposant critique par rapport à l’entropie volumique de .
Let be a higher rank simple real algebraic group, or more generally, any semisimple real algebraic group with no rank one factors and the associated Riemannian symmetric space. For any Zariski dense discrete subgroup , we prove that if and only if no positive Laplace eigenfunction belongs to , or equivalently, the bottom of the -spectrum is not an atom of the spectral measure of the negative Laplacian. This contrasts with the rank one situation where the square-integrability of the base eigenfunction is determined by the size of the critical exponent relative to the volume entropy of .
Révisé le :
Accepté le :
Publié le :
Keywords: Laplace eigenfunction, locally symmetric manifolds, infinite volume, Patterson–Sullivan measure
Mots-clés : Fonctions propres de l’opérateur de Laplace–Beltrami, espaces localement symétriques, volume infini, mesures de Patterson–Sullivan
Sam Edwards 1 ; Mikolaj Fraczyk 2, 3 ; Minju Lee 2 ; Hee Oh 4
@article{CRMATH_2024__362_G13_1873_0, author = {Sam Edwards and Mikolaj Fraczyk and Minju Lee and Hee Oh}, title = {Infinite volume and atoms at the bottom of the spectrum}, journal = {Comptes Rendus. Math\'ematique}, pages = {1873--1880}, publisher = {Acad\'emie des sciences, Paris}, volume = {362}, year = {2024}, doi = {10.5802/crmath.586}, language = {en}, }
TY - JOUR AU - Sam Edwards AU - Mikolaj Fraczyk AU - Minju Lee AU - Hee Oh TI - Infinite volume and atoms at the bottom of the spectrum JO - Comptes Rendus. Mathématique PY - 2024 SP - 1873 EP - 1880 VL - 362 PB - Académie des sciences, Paris DO - 10.5802/crmath.586 LA - en ID - CRMATH_2024__362_G13_1873_0 ER -
Sam Edwards; Mikolaj Fraczyk; Minju Lee; Hee Oh. Infinite volume and atoms at the bottom of the spectrum. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 1873-1880. doi : 10.5802/crmath.586. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.586/
[1] Bottom of the spectrum of the Laplacian on locally symmetric spaces, Geom. Dedicata, Volume 216 (2022) no. 1, 3, 12 pages | DOI | MR | Zbl
[2] Limit sets of discrete groups of isometries of exotic hyperbolic spaces, Trans. Am. Math. Soc., Volume 351 (1999) no. 4, pp. 1507-1530 | DOI | MR | Zbl
[3] The natural flow and the critical exponent (2023) (https://arxiv.org/abs/2302.12665)
[4] Hausdorff dimensions of limit sets. I, Invent. Math., Volume 102 (1990) no. 3, pp. 521-541 | DOI | MR | Zbl
[5] Anosov groups: local mixing, counting and equidistribution, Geom. Topol., Volume 27 (2023) no. 2, pp. 513-573 | DOI | MR | Zbl
[6] Die Resolvente zum Eigenwertproblem der automorphen Formen in der hyperbolischen Ebene. II, Math. Z., Volume 132 (1973), pp. 99-134 | DOI | Zbl
[7] Resolvente zum Eigenwertproblem der automorphen Formen in der hyperbolischen Ebene. I, Math. Ann., Volume 203 (1973), pp. 295-330 | DOI | Zbl
[8] Die Resolvente zum Eigenwertproblem der automorphen Formen in der hyperbolischen Ebene. III, Math. Ann., Volume 208 (1974), pp. 99-132 | DOI | Zbl
[9] Temperedness of and positive eigenfunctions in higher rank, Commun. Am. Math. Soc., Volume 3 (2023), pp. 744-778 | DOI | MR | Zbl
[10] Discrete subgroups with finite Bowen–Margulis–Sullivan measure in higher rank (2023) (To appear in Geom. Topol., https://arxiv.org/abs/2305.00610)
[11] Heat kernel and analysis on manifolds, AMS/IP Studies in Advanced Mathematics, 47, American Mathematical Society; International Press, 2009, xviii+482 pages | DOI | MR | Zbl
[12] Small eigenvalues of geometrically finite manifolds, J. Geom. Anal., Volume 14 (2004) no. 2, pp. 281-290 | DOI | MR | Zbl
[13] Nonnegative eigen functions of Laplace–Beltrami operators on symmetric spaces, Bull. Am. Math. Soc., Volume 74 (1968), pp. 167-170 | DOI | MR | Zbl
[14] Critical exponents of discrete groups and -spectrum, Proc. Am. Math. Soc., Volume 132 (2004) no. 3, pp. 919-927 | DOI | MR | Zbl
[15] Finiteness of small eigenvalues of geometrically finite rank one locally symmetric manifolds, Math. Res. Lett., Volume 27 (2020) no. 2, pp. 465-500 | DOI | MR | Zbl
[16] The asymptotic distribution of lattice points in Euclidean and non-Euclidean spaces, J. Funct. Anal., Volume 46 (1982) no. 3, pp. 280-350 | DOI | MR | Zbl
[17] The Laplacian operator on a Riemann surface, Compos. Math., Volume 31 (1975) no. 1, pp. 83-107 | Numdam | MR | Zbl
[18] The Laplacian operator on a Riemann surface. II, Compos. Math., Volume 32 (1976) no. 1, pp. 71-112 | Numdam | MR | Zbl
[19] The Laplacian operator on a Riemann surface. III, Compos. Math., Volume 33 (1976) no. 3, pp. 227-259 | Numdam | MR | Zbl
[20] The limit set of a Fuchsian group, Acta Math., Volume 136 (1976) no. 3-4, pp. 241-273 | DOI | MR | Zbl
[21] Mesures de Patterson–Sullivan en rang supérieur, Geom. Funct. Anal., Volume 12 (2002) no. 4, pp. 776-809 | DOI | MR | Zbl
[22] A decade of Thurston stories, What’s next? – the mathematical legacy of William P. Thurston (Annals of Mathematics Studies), Volume 205, Princeton University Press, 2020, pp. 415-421 | DOI | MR | Zbl
[23] The density at infinity of a discrete group of hyperbolic motions, Publ. Math., Inst. Hautes Étud. Sci., Volume 50 (1979), pp. 171-202 | DOI | Numdam | MR | Zbl
[24] Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinian groups, Acta Math., Volume 153 (1984) no. 3-4, pp. 259-277 | DOI | MR | Zbl
[25] Related aspects of positivity in Riemannian geometry, J. Differ. Geom., Volume 25 (1987) no. 3, pp. 327-351 | DOI | MR | Zbl
[26] Absence of principal eigenvalues for higher rank locally symmetric spaces, Commun. Math. Phys., Volume 403 (2023) no. 3, pp. 1275-1295 | DOI | MR | Zbl
[27] Temperedness of locally symmetric spaces: the product case, Geom. Dedicata, Volume 218 (2024) no. 3, 76, 20 pages | DOI | MR | Zbl
[28] Ergodic theory and semisimple groups, Monographs in Mathematics, 81, Birkhäuser, 1984, x+209 pages | DOI | MR | Zbl
Cité par Sources :
Commentaires - Politique