Comptes Rendus
Article de recherche - Théorie spectrale
Infinite volume and atoms at the bottom of the spectrum
[Volume infini et atomes au bas du spectre]
Comptes Rendus. Mathématique, Volume 362 (2024), pp. 1873-1880.

Soit G un groupe algébrique réel simple de rang supérieur, ou plus généralement un groupe algébrique réel semi-simple sans facteurs de rang un et X l’espace symétrique riemannien associé. Pour tout sous-groupe discret dense de Zariski Γ<G, on prouve que Vol(ΓX)= si et seulement si aucune fonction propre de Laplacien positive appartient à L 2 (ΓX), ou de manière équivalente, le bas du spectre L 2 n’est pas un atome de la mesure spectrale du Laplacien négatif. Cela contraste avec la situation de rang un où l’intégrabilité au carré de la fonction propre de base est déterminée par la taille de l’exposant critique par rapport à l’entropie volumique de X.

Let G be a higher rank simple real algebraic group, or more generally, any semisimple real algebraic group with no rank one factors and X the associated Riemannian symmetric space. For any Zariski dense discrete subgroup Γ<G, we prove that Vol(ΓX)= if and only if no positive Laplace eigenfunction belongs to L 2 (ΓX), or equivalently, the bottom of the L 2 -spectrum is not an atom of the spectral measure of the negative Laplacian. This contrasts with the rank one situation where the square-integrability of the base eigenfunction is determined by the size of the critical exponent relative to the volume entropy of X.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.586
Classification : 22F30, 43A85
Keywords: Laplace eigenfunction, locally symmetric manifolds, infinite volume, Patterson–Sullivan measure
Mots-clés : Fonctions propres de l’opérateur de Laplace–Beltrami, espaces localement symétriques, volume infini, mesures de Patterson–Sullivan

Sam Edwards 1 ; Mikolaj Fraczyk 2, 3 ; Minju Lee 2 ; Hee Oh 4

1 Department of Mathematical Sciences, Durham University, Lower Mountjoy, DH1 3LE Durham, United Kingdom
2 Mathematics department, University of Chicago, Chicago, IL 60637, USA
3 Faculty of Mathematics and Computer Science, Jagiellonian University, ul. Łojasiewicza 6, 30-348 Kraków, Poland
4 Mathematics department, Yale university, New Haven, CT 06520, USA
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2024__362_G13_1873_0,
     author = {Sam Edwards and Mikolaj Fraczyk and Minju Lee and Hee Oh},
     title = {Infinite volume and atoms at the bottom of the spectrum},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1873--1880},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {362},
     year = {2024},
     doi = {10.5802/crmath.586},
     language = {en},
}
TY  - JOUR
AU  - Sam Edwards
AU  - Mikolaj Fraczyk
AU  - Minju Lee
AU  - Hee Oh
TI  - Infinite volume and atoms at the bottom of the spectrum
JO  - Comptes Rendus. Mathématique
PY  - 2024
SP  - 1873
EP  - 1880
VL  - 362
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.586
LA  - en
ID  - CRMATH_2024__362_G13_1873_0
ER  - 
%0 Journal Article
%A Sam Edwards
%A Mikolaj Fraczyk
%A Minju Lee
%A Hee Oh
%T Infinite volume and atoms at the bottom of the spectrum
%J Comptes Rendus. Mathématique
%D 2024
%P 1873-1880
%V 362
%I Académie des sciences, Paris
%R 10.5802/crmath.586
%G en
%F CRMATH_2024__362_G13_1873_0
Sam Edwards; Mikolaj Fraczyk; Minju Lee; Hee Oh. Infinite volume and atoms at the bottom of the spectrum. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 1873-1880. doi : 10.5802/crmath.586. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.586/

[1] Jean-Philippe Anker; Hong-Wei Zhang Bottom of the L 2 spectrum of the Laplacian on locally symmetric spaces, Geom. Dedicata, Volume 216 (2022) no. 1, 3, 12 pages | DOI | MR | Zbl

[2] Kevin Corlette; Alessandra Iozzi Limit sets of discrete groups of isometries of exotic hyperbolic spaces, Trans. Am. Math. Soc., Volume 351 (1999) no. 4, pp. 1507-1530 | DOI | MR | Zbl

[3] Chris Connell; D. B. McReynolds; Shi Wang The natural flow and the critical exponent (2023) (https://arxiv.org/abs/2302.12665)

[4] Kevin Corlette Hausdorff dimensions of limit sets. I, Invent. Math., Volume 102 (1990) no. 3, pp. 521-541 | DOI | MR | Zbl

[5] Samuel Edwards; Minju Lee; Hee Oh Anosov groups: local mixing, counting and equidistribution, Geom. Topol., Volume 27 (2023) no. 2, pp. 513-573 | DOI | MR | Zbl

[6] Jürgen Elstrodt Die Resolvente zum Eigenwertproblem der automorphen Formen in der hyperbolischen Ebene. II, Math. Z., Volume 132 (1973), pp. 99-134 | DOI | Zbl

[7] Jürgen Elstrodt Resolvente zum Eigenwertproblem der automorphen Formen in der hyperbolischen Ebene. I, Math. Ann., Volume 203 (1973), pp. 295-330 | DOI | Zbl

[8] Jürgen Elstrodt Die Resolvente zum Eigenwertproblem der automorphen Formen in der hyperbolischen Ebene. III, Math. Ann., Volume 208 (1974), pp. 99-132 | DOI | Zbl

[9] Sam Edwards; Hee Oh Temperedness of L 2 (ΓG) and positive eigenfunctions in higher rank, Commun. Am. Math. Soc., Volume 3 (2023), pp. 744-778 | DOI | MR | Zbl

[10] Mikolaj Fraczyk; Minju Lee Discrete subgroups with finite Bowen–Margulis–Sullivan measure in higher rank (2023) (To appear in Geom. Topol., https://arxiv.org/abs/2305.00610)

[11] Alexander Grigor’yan Heat kernel and analysis on manifolds, AMS/IP Studies in Advanced Mathematics, 47, American Mathematical Society; International Press, 2009, xviii+482 pages | DOI | MR | Zbl

[12] Ursula Hamenstädt Small eigenvalues of geometrically finite manifolds, J. Geom. Anal., Volume 14 (2004) no. 2, pp. 281-290 | DOI | MR | Zbl

[13] R. G. Laha Nonnegative eigen functions of Laplace–Beltrami operators on symmetric spaces, Bull. Am. Math. Soc., Volume 74 (1968), pp. 167-170 | DOI | MR | Zbl

[14] Enrico Leuzinger Critical exponents of discrete groups and L 2 -spectrum, Proc. Am. Math. Soc., Volume 132 (2004) no. 3, pp. 919-927 | DOI | MR | Zbl

[15] Jialun Li Finiteness of small eigenvalues of geometrically finite rank one locally symmetric manifolds, Math. Res. Lett., Volume 27 (2020) no. 2, pp. 465-500 | DOI | MR | Zbl

[16] Peter D. Lax; Ralph S. Phillips The asymptotic distribution of lattice points in Euclidean and non-Euclidean spaces, J. Funct. Anal., Volume 46 (1982) no. 3, pp. 280-350 | DOI | MR | Zbl

[17] S. J. Patterson The Laplacian operator on a Riemann surface, Compos. Math., Volume 31 (1975) no. 1, pp. 83-107 | Numdam | MR | Zbl

[18] S. J. Patterson The Laplacian operator on a Riemann surface. II, Compos. Math., Volume 32 (1976) no. 1, pp. 71-112 | Numdam | MR | Zbl

[19] S. J. Patterson The Laplacian operator on a Riemann surface. III, Compos. Math., Volume 33 (1976) no. 3, pp. 227-259 | Numdam | MR | Zbl

[20] S. J. Patterson The limit set of a Fuchsian group, Acta Math., Volume 136 (1976) no. 3-4, pp. 241-273 | DOI | MR | Zbl

[21] J.-F. Quint Mesures de Patterson–Sullivan en rang supérieur, Geom. Funct. Anal., Volume 12 (2002) no. 4, pp. 776-809 | DOI | MR | Zbl

[22] Dennis Sullivan A decade of Thurston stories, What’s next? – the mathematical legacy of William P. Thurston (Annals of Mathematics Studies), Volume 205, Princeton University Press, 2020, pp. 415-421 | DOI | MR | Zbl

[23] Dennis Sullivan The density at infinity of a discrete group of hyperbolic motions, Publ. Math., Inst. Hautes Étud. Sci., Volume 50 (1979), pp. 171-202 | DOI | Numdam | MR | Zbl

[24] Dennis Sullivan Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinian groups, Acta Math., Volume 153 (1984) no. 3-4, pp. 259-277 | DOI | MR | Zbl

[25] Dennis Sullivan Related aspects of positivity in Riemannian geometry, J. Differ. Geom., Volume 25 (1987) no. 3, pp. 327-351 | DOI | MR | Zbl

[26] Tobias Weich; Lasse L. Wolf Absence of principal eigenvalues for higher rank locally symmetric spaces, Commun. Math. Phys., Volume 403 (2023) no. 3, pp. 1275-1295 | DOI | MR | Zbl

[27] Tobias Weich; Lasse L. Wolf Temperedness of locally symmetric spaces: the product case, Geom. Dedicata, Volume 218 (2024) no. 3, 76, 20 pages | DOI | MR | Zbl

[28] Robert J. Zimmer Ergodic theory and semisimple groups, Monographs in Mathematics, 81, Birkhäuser, 1984, x+209 pages | DOI | MR | Zbl

Cité par Sources :

Commentaires - Politique