[Volume infini et atomes au bas du spectre]
Soit
Let
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.586
Keywords: Laplace eigenfunction, locally symmetric manifolds, infinite volume, Patterson–Sullivan measure
Mots-clés : Fonctions propres de l’opérateur de Laplace–Beltrami, espaces localement symétriques, volume infini, mesures de Patterson–Sullivan
Sam Edwards 1 ; Mikolaj Fraczyk 2, 3 ; Minju Lee 2 ; Hee Oh 4

@article{CRMATH_2024__362_G13_1873_0, author = {Sam Edwards and Mikolaj Fraczyk and Minju Lee and Hee Oh}, title = {Infinite volume and atoms at the bottom of the spectrum}, journal = {Comptes Rendus. Math\'ematique}, pages = {1873--1880}, publisher = {Acad\'emie des sciences, Paris}, volume = {362}, year = {2024}, doi = {10.5802/crmath.586}, zbl = {07962936}, language = {en}, }
TY - JOUR AU - Sam Edwards AU - Mikolaj Fraczyk AU - Minju Lee AU - Hee Oh TI - Infinite volume and atoms at the bottom of the spectrum JO - Comptes Rendus. Mathématique PY - 2024 SP - 1873 EP - 1880 VL - 362 PB - Académie des sciences, Paris DO - 10.5802/crmath.586 LA - en ID - CRMATH_2024__362_G13_1873_0 ER -
Sam Edwards; Mikolaj Fraczyk; Minju Lee; Hee Oh. Infinite volume and atoms at the bottom of the spectrum. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 1873-1880. doi : 10.5802/crmath.586. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.586/
[1] Bottom of the
[2] Limit sets of discrete groups of isometries of exotic hyperbolic spaces, Trans. Am. Math. Soc., Volume 351 (1999) no. 4, pp. 1507-1530 | DOI | MR | Zbl
[3] The natural flow and the critical exponent (2023) (https://arxiv.org/abs/2302.12665)
[4] Hausdorff dimensions of limit sets. I, Invent. Math., Volume 102 (1990) no. 3, pp. 521-541 | DOI | MR | Zbl
[5] Anosov groups: local mixing, counting and equidistribution, Geom. Topol., Volume 27 (2023) no. 2, pp. 513-573 | DOI | MR | Zbl
[6] Die Resolvente zum Eigenwertproblem der automorphen Formen in der hyperbolischen Ebene. II, Math. Z., Volume 132 (1973), pp. 99-134 | DOI | MR | Zbl
[7] Resolvente zum Eigenwertproblem der automorphen Formen in der hyperbolischen Ebene. I, Math. Ann., Volume 203 (1973), pp. 295-330 | DOI | MR | Zbl
[8] Die Resolvente zum Eigenwertproblem der automorphen Formen in der hyperbolischen Ebene. III, Math. Ann., Volume 208 (1974), pp. 99-132 | DOI | MR | Zbl
[9] Temperedness of
[10] Discrete subgroups with finite Bowen–Margulis–Sullivan measure in higher rank (2023) (To appear in Geom. Topol., https://arxiv.org/abs/2305.00610)
[11] Heat kernel and analysis on manifolds, AMS/IP Studies in Advanced Mathematics, 47, American Mathematical Society; International Press, 2009, xviii+482 pages | DOI | MR | Zbl
[12] Small eigenvalues of geometrically finite manifolds, J. Geom. Anal., Volume 14 (2004) no. 2, pp. 281-290 | DOI | MR | Zbl
[13] Nonnegative eigen functions of Laplace–Beltrami operators on symmetric spaces, Bull. Am. Math. Soc., Volume 74 (1968), pp. 167-170 | DOI | MR | Zbl
[14] Critical exponents of discrete groups and
[15] Finiteness of small eigenvalues of geometrically finite rank one locally symmetric manifolds, Math. Res. Lett., Volume 27 (2020) no. 2, pp. 465-500 | DOI | MR | Zbl
[16] The asymptotic distribution of lattice points in Euclidean and non-Euclidean spaces, J. Funct. Anal., Volume 46 (1982) no. 3, pp. 280-350 | DOI | MR | Zbl
[17] The Laplacian operator on a Riemann surface, Compos. Math., Volume 31 (1975) no. 1, pp. 83-107 | Numdam | MR | Zbl
[18] The Laplacian operator on a Riemann surface. II, Compos. Math., Volume 32 (1976) no. 1, pp. 71-112 | Numdam | MR | Zbl
[19] The Laplacian operator on a Riemann surface. III, Compos. Math., Volume 33 (1976) no. 3, pp. 227-259 | Numdam | MR | Zbl
[20] The limit set of a Fuchsian group, Acta Math., Volume 136 (1976) no. 3-4, pp. 241-273 | DOI | MR | Zbl
[21] Mesures de Patterson–Sullivan en rang supérieur, Geom. Funct. Anal., Volume 12 (2002) no. 4, pp. 776-809 | DOI | MR | Zbl
[22] A decade of Thurston stories, What’s next? – the mathematical legacy of William P. Thurston (Annals of Mathematics Studies), Volume 205, Princeton University Press, 2020, pp. 415-421 | DOI | MR | Zbl
[23] The density at infinity of a discrete group of hyperbolic motions, Publ. Math., Inst. Hautes Étud. Sci., Volume 50 (1979), pp. 171-202 | DOI | Numdam | MR | Zbl
[24] Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinian groups, Acta Math., Volume 153 (1984) no. 3-4, pp. 259-277 | DOI | MR | Zbl
[25] Related aspects of positivity in Riemannian geometry, J. Differ. Geom., Volume 25 (1987) no. 3, pp. 327-351 | DOI | MR | Zbl
[26] Absence of principal eigenvalues for higher rank locally symmetric spaces, Commun. Math. Phys., Volume 403 (2023) no. 3, pp. 1275-1295 | DOI | MR | Zbl
[27] Temperedness of locally symmetric spaces: the product case, Geom. Dedicata, Volume 218 (2024) no. 3, 76, 20 pages | DOI | MR | Zbl
[28] Ergodic theory and semisimple groups, Monographs in Mathematics, 81, Birkhäuser, 1984, x+209 pages | DOI | MR | Zbl
Cité par Sources :
Commentaires - Politique