[Des espaces métriques homogènes aux groupes de Lie]
Nous étudions les espaces métriques homogènes, c’est-à-dire, les espaces métriques connexes et localement compacts dont le groupe d’isométries agit transitivement.
Après avoir passé en revue un certain nombre de résultats classiques, nous utilisons la théorie de la structure de Gleason–Iwasawa–Montgomery–Yamabe–Zippin dans le but de montrer que pour tout positif, chacun des espaces susmentionnés est -quasi-isométrique à un groupe de Lie métrique connexe (métrizé par une distance invariante à gauche non nécessairement riemannienne).
Ensuite, nous développons la théorie de la structure des groupes de Lie pour montrer que toute variété métrique homogène est grossièrement isométrique par homéomorphisme au quotient d’un groupe de Lie moyennable, connexe, et grossièrement isométrique à un groupe de Lie métrique résoluble simplement connexe.
Troisièmement, nous étudions plus en détail les groupes de Lie métriques résolubles, et nous développons et étendons les travaux de Gordon et Wilson [31, 32] et de Jablonski [44] sur ceux-ci, en montrant, par exemple, que les groupes de Lie résolubles connexes peuvent être rendus isométriques si et seulement s’ils ont la même ombre réelle.
Enfin, nous montrons que les espaces métriques homogènes qui admettent une homothétie métrique sont tous des groupes de Lie métriques possédant une homothétie automorphe.
We study homogeneous metric spaces, by which we mean connected, locally compact metric spaces whose isometry group acts transitively.
After a review of a number of classical results, we use the Gleason–Iwasawa–Montgomery–Yamabe–Zippin structure theory to show that for all positive , each such space is -quasi-isometric to a connected metric Lie group (metrized with a left-invariant distance that is not necessarily Riemannian).
Next, we develop the structure theory of Lie groups to show that every homogeneous metric manifold is homeomorphically roughly isometric to a quotient space of a connected amenable Lie group, and roughly isometric to a simply connected solvable metric Lie group.
Third, we investigate solvable metric Lie groups in more detail, and expound on and extend work of Gordon and Wilson [31, 32] and Jablonski [44] on these, showing, for instance, that connected solvable Lie groups may be made isometric if and only if they have the same real-shadow.
Finally, we show that homogeneous metric spaces that admit a metric dilation are all metric Lie groups with an automorphic dilation.
Révisé le :
Accepté le :
Publié le :
Keywords: Homogeneous spaces, Structure, Lie groups
Mot clés : Espaces homogènes, structure, groupes de Lie
Michael G. Cowling 1 ; Ville Kivioja 2 ; Enrico Le Donne 2, 3 ; Sebastiano Nicolussi Golo 2 ; Alessandro Ottazzi 1
@article{CRMATH_2024__362_G9_943_0, author = {Michael G. Cowling and Ville Kivioja and Enrico Le Donne and Sebastiano Nicolussi Golo and Alessandro Ottazzi}, title = {From homogeneous metric spaces to {Lie} groups}, journal = {Comptes Rendus. Math\'ematique}, pages = {943--1014}, publisher = {Acad\'emie des sciences, Paris}, volume = {362}, year = {2024}, doi = {10.5802/crmath.608}, language = {en}, }
TY - JOUR AU - Michael G. Cowling AU - Ville Kivioja AU - Enrico Le Donne AU - Sebastiano Nicolussi Golo AU - Alessandro Ottazzi TI - From homogeneous metric spaces to Lie groups JO - Comptes Rendus. Mathématique PY - 2024 SP - 943 EP - 1014 VL - 362 PB - Académie des sciences, Paris DO - 10.5802/crmath.608 LA - en ID - CRMATH_2024__362_G9_943_0 ER -
%0 Journal Article %A Michael G. Cowling %A Ville Kivioja %A Enrico Le Donne %A Sebastiano Nicolussi Golo %A Alessandro Ottazzi %T From homogeneous metric spaces to Lie groups %J Comptes Rendus. Mathématique %D 2024 %P 943-1014 %V 362 %I Académie des sciences, Paris %R 10.5802/crmath.608 %G en %F CRMATH_2024__362_G9_943_0
Michael G. Cowling; Ville Kivioja; Enrico Le Donne; Sebastiano Nicolussi Golo; Alessandro Ottazzi. From homogeneous metric spaces to Lie groups. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 943-1014. doi : 10.5802/crmath.608. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.608/
[1] Sub-Riemannian structures on 3D Lie groups, J. Dyn. Control Syst., Volume 18 (2012) no. 1, pp. 21-44 | DOI | MR | Zbl
[2] -induced flows, Am. J. Math., Volume 88 (1966), pp. 43-60 | DOI | MR | Zbl
[3] Sub-Laplacians with drift on Lie groups of polynomial volume growth, Memoirs of the American Mathematical Society, 155, American Mathematical Society, 2002 no. 739, x+101 pages | DOI | MR | Zbl
[4] Homogeneous Riemannian spaces of negative curvature, Math. USSR, Sb., Volume 25 (1975), pp. 87-109 | DOI | Zbl
[5] Characterizing maximal compact subgroups, Arch. Math., Volume 98 (2012) no. 6, pp. 555-560 | DOI | MR | Zbl
[6] Splitting theorems and the structure of solvmanifolds, Ann. Math., Volume 92 (1970), pp. 164-173 | DOI | MR | Zbl
[7] Homogeneous manifolds with an intrinsic metric. II, Sib. Mat. Zh., Volume 30 (1989) no. 2, p. 14-28, 225 | DOI | MR | Zbl
[8] Conformal dimension and Gromov hyperbolic groups with 2-sphere boundary, Geom. Topol., Volume 9 (2005), pp. 219-246 | DOI | MR | Zbl
[9] Lie groups and Lie algebras. Chapters 7–9, Elements of Mathematics (Berlin), Springer, 2005, xii+434 pages (Translated from the 1975 and 1982 French originals by Andrew Pressley) | MR
[10] Mostow type rigidity theorems, Handbook of group actions. Vol. IV (Advanced Lectures in Mathematics), Volume 41, International Press, 2018, pp. 139-188 | MR
[11] Lie groups and Lie algebras. Chapters 1–3. Translated from the French, Reprint of the 1975 edition, Elements of Mathematics (Berlin), Springer, 1989, xviii+450 pages (Translated from the French, Reprint of the 1975 edition) | MR | Zbl
[12] Algebra. II. Chapters 4–7. Translated from the French by P. M. Cohn and J. Howie, Elements of Mathematics (Berlin), Springer, 1990, vii+461 pages | MR | Zbl
[13] Structure conforme au bord et flot géodésique d’un -espace, Enseign. Math., Volume 41 (1995) no. 1-2, pp. 63-102 | MR | Zbl
[14] Covering group theory for topological groups, Topology Appl., Volume 114 (2001) no. 2, pp. 141-186 | DOI | MR | Zbl
[15] A note on compact subgroups of topological groups, Bull. Aust. Math. Soc., Volume 33 (1986) no. 2, pp. 273-278 | DOI | MR | Zbl
[16] Geometry of locally compact groups of polynomial growth and shape of large balls, Groups Geom. Dyn., Volume 8 (2014) no. 3, pp. 669-732 | DOI | MR | Zbl
[17] Metric geometry of locally compact groups, EMS Tracts in Mathematics, 25, European Mathematical Society, 2016, viii+235 pages | DOI | MR | Zbl
[18] On the topological structure of solvable groups, Ann. Math., Volume 42 (1941), pp. 668-675 | DOI | MR | Zbl
[19] Commability and focal locally compact groups, Indiana Univ. Math. J., Volume 64 (2015) no. 1, pp. 115-150 | DOI | MR | Zbl
[20] Dimension of asymptotic cones of Lie groups, J. Topol., Volume 1 (2008) no. 2, pp. 342-361 | DOI | MR | Zbl
[21] On sublinear bilipschitz equivalence of groups, Ann. Sci. Éc. Norm. Supér., Volume 52 (2019) no. 5, pp. 1201-1242 | DOI | MR | Zbl
[22] L’application exponentielle dans les groupes de Lie résolubles, Bull. Soc. Math. Fr., Volume 85 (1957), pp. 113-121 | DOI | MR | Zbl
[23] Analysis on Lie groups with polynomial growth, Progress in Mathematics, 214, Birkhäuser, 2003, viii+312 pages | DOI | MR | Zbl
[24] Über metrisch homogene räume, Abh. Math. Semin. Univ. Hamb., Volume 6 (1928) no. 1, pp. 367-376 | DOI | MR
[25] Nonexistence of quasiconformal maps between certain metric measure spaces, Int. Math. Res. Not., Volume 16 (2015), pp. 6968-6987 | DOI | MR | Zbl
[26] On the quasi-isometric and bi-Lipschitz classification of 3D Riemannian Lie groups, Geom. Dedicata, Volume 210 (2021), pp. 27-42 | DOI | MR | Zbl
[27] Subelliptic estimates and function spaces on nilpotent Lie groups, Ark. Mat., Volume 13 (1975) no. 2, pp. 161-207 | DOI | MR | Zbl
[28] Estimates for the complex and analysis on the Heisenberg group, Commun. Pure Appl. Math., Volume 27 (1974), pp. 429-522 | DOI | MR | Zbl
[29] Hardy spaces on homogeneous groups, Mathematical Notes, 28, Princeton University Press: Princeton, NJ; University of Tokyo Press: Tokyo, 1982, xii+285 pages | MR | Zbl
[30]
(Mathematics Review MR3365793)[31] Groups of polynomial growth and expanding maps, Publ. Math., Inst. Hautes Étud. Sci., Volume 53 (1981), pp. 53-73 | MR | Zbl
[32] Carnot–Carathéodory spaces seen from within, Sub-Riemannian geometry (Progress in Mathematics), Volume 144, Birkhäuser, 1996, pp. 79-323 | MR | Zbl
[33] Croissance pôlynomiale et périodes des fonctions harmoniques, Bull. Soc. Math. Fr., Volume 101 (1973), pp. 333-379 | DOI | MR | Zbl
[34] The fine structure of transitive Riemannian isometry groups. I, Trans. Am. Math. Soc., Volume 289 (1985) no. 1, pp. 367-380 | DOI | MR | Zbl
[35] Isometry groups of Riemannian solvmanifolds, Trans. Am. Math. Soc., Volume 307 (1988) no. 1, pp. 245-269 | DOI | MR | Zbl
[36] On homogeneous manifolds of negative curvature, Math. Ann., Volume 211 (1974), pp. 23-34 | DOI | MR | Zbl
[37] Differential geometry, Lie groups, and symmetric spaces, Graduate Studies in Mathematics, 34, American Mathematical Society, 2001, xxvi+641 pages (Corrected reprint of the 1978 original) | DOI | MR | Zbl
[38] The homotopy types of compact Lie groups, Isr. J. Math., Volume 51 (1985) no. 1-2, pp. 20-26 | DOI | MR | Zbl
[39] The structure of compact groups. A primer for the student – a handbook for the expert, Studies in Mathematics, 25, Walter de Gruyter, 2013, xxii+924 pages | DOI | MR | Zbl
[40] On the rigidity of discrete isometry groups of negatively curved spaces, Comment. Math. Helv., Volume 72 (1997) no. 3, pp. 349-388 | DOI | MR | Zbl
[41] Abstract harmonic analysis. Vol. I: Structure of topological groups. Integration theory, group representations, Grundlehren der Mathematischen Wissenschaften, 115, Springer, 1963, viii+519 pages | MR | Zbl
[42] A smooth subadditive homogeneous norm on a homogeneous group, Stud. Math., Volume 96 (1990) no. 3, pp. 231-236 | DOI | MR | Zbl
[43] On some types of topological groups, Ann. Math., Volume 50 (1949), pp. 507-558 | DOI | MR | Zbl
[44] Maximal symmetry and unimodular solvmanifolds, Pac. J. Math., Volume 298 (2019) no. 2, pp. 417-427 | DOI | MR | Zbl
[45] Lie algebras, Dover Publications, 1979, ix+331 pages (Republication of the 1962 original) | MR
[46] Growth of connected locally compact groups, J. Funct. Anal., Volume 12 (1973), pp. 113-127 | DOI | MR | Zbl
[47] Cross sections for quotient maps of locally compact groups, Math. Scand., Volume 55 (1984) no. 1, pp. 152-160 | DOI | MR | Zbl
[48] Isometries of nilpotent metric groups, J. Éc. Polytech., Math., Volume 4 (2017), pp. 473-482 | DOI | MR | Zbl
[49] Metric equivalences of Heintze groups and applications to classifications in low dimension, Ill. J. Math., Volume 66 (2022) no. 1, pp. 91-121 | DOI | MR | Zbl
[50] Foundations of differential geometry. I, Interscience Publishers, 1963, xi+329 pages | MR | Zbl
[51] Foundations of differential geometry. II, Interscience Tracts in Pure and Applied Mathematics, 15, Interscience Publishers John Wiley & Sons, Inc., 1969, xv+470 pages | MR | Zbl
[52] Lie groups beyond an introduction, Progress in Mathematics, 140, Birkhäuser, 2002, xviii+812 pages | MR | Zbl
[53] Metric Lie groups admitting dilations, Ark. Mat., Volume 59 (2021) no. 1, pp. 125-163 | DOI | MR | Zbl
[54] Regularity properties of spheres in homogeneous groups, Trans. Am. Math. Soc., Volume 370 (2018) no. 3, pp. 2057-2084 | DOI | MR | Zbl
[55] Besicovitch covering property on graded groups and applications to measure differentiation, J. Reine Angew. Math., Volume 750 (2019), pp. 241-297 | DOI | MR | Zbl
[56] A metric characterization of Carnot groups, Proc. Am. Math. Soc., Volume 143 (2015) no. 2, pp. 845-849 | DOI | MR | Zbl
[57] A note on curvature and fundamental group, J. Differ. Geom., Volume 2 (1968), pp. 1-7 | MR | Zbl
[58] A tour of subriemannian geometries, their geodesics and applications, Mathematical Surveys and Monographs, 91, American Mathematical Society, 2002, xx+259 pages | DOI | MR | Zbl
[59] On maximal subgroups of real Lie groups, Ann. Math., Volume 74 (1961), pp. 503-517 | DOI | MR | Zbl
[60] Strong rigidity of locally symmetric spaces, Annals of Mathematics Studies, No. 78, Princeton University Press: Princeton, NJ; University of Tokyo Press: Tokyo, 1973, v+195 pages | MR | Zbl
[61] The exponential map and differential equations on real Lie groups, J. Lie Theory, Volume 13 (2003) no. 1, pp. 291-306 | MR | Zbl
[62] Topological transformation groups, Robert E. Krieger Publishing Co., 1974, xi+289 pages (Reprint of the 1955 original) | MR | Zbl
[63] Invariant affine connections on homogeneous spaces, Am. J. Math., Volume 76 (1954), pp. 33-65 | DOI | MR | Zbl
[64] Géometrie du groupe d’Heisenberg, Ph. D. Thesis, Université Paris VII (1982)
[65] Croissance des boules et des géodésiques fermées dans les nilvariétés, Ergodic Theory Dyn. Syst., Volume 3 (1983) no. 3, pp. 415-445 | DOI | MR | Zbl
[66] Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un, Ann. Math., Volume 129 (1989) no. 1, pp. 1-60 | DOI | MR | Zbl
[67] Hypoelliptic differential operators and nilpotent groups, Acta Math., Volume 137 (1976) no. 3-4, pp. 247-320 | DOI | MR | Zbl
[68] Topology of Lie groups, Bull. Am. Math. Soc., Volume 58 (1952), pp. 2-37 | DOI | MR | Zbl
[69] Contractive automorphisms on locally compact groups, Math. Z., Volume 191 (1986) no. 1, pp. 73-90 | DOI | MR | Zbl
[70] Locally compact groups, EMS Textbooks in Mathematics, European Mathematical Society, 2006, x+302 pages | DOI | MR | Zbl
[71] On the topological characterization of transitive Lie group actions, Acta Sci. Math., Volume 36 (1974), pp. 323-344 | MR | Zbl
[72] Hilbert’s fifth problem and related topics, Graduate Studies in Mathematics, 153, American Mathematical Society, 2014, xiv+338 pages | DOI | MR | Zbl
[73] Lie groups, Lie algebras, and their representations, Graduate Texts in Mathematics, 102, Springer, 1984, xiii+430 pages (Reprint of the 1974 edition) | DOI | MR | Zbl
[74] Harmonic analysis on homogeneous spaces, Pure and Applied Mathematics, 19, Marcel Dekker, 1973, xv+361 pages | MR | Zbl
[75] Isometry groups on homogeneous nilmanifolds, Geom. Dedicata, Volume 12 (1982) no. 3, pp. 337-346 | DOI | MR | Zbl
[76] Growth of finitely generated solvable groups and curvature of Riemannian manifolds, J. Differ; Geom., Volume 2 (1968), pp. 421-446 | DOI | MR | Zbl
[77] Large scale geometry of negatively curved , Geom. Topol., Volume 18 (2014) no. 2, pp. 831-872 | DOI | MR | Zbl
[78] Ergodic theory and semisimple groups, Monographs in Mathematics, 81, Birkhäuser, 1984, x+209 pages | DOI | MR | Zbl
[79] A volume invariant of coverings, Dokl. Akad. Nauk SSSR, n. Ser., Volume 105 (1955), pp. 32-34 | MR | Zbl
Cité par Sources :
Commentaires - Politique