Comptes Rendus
Article de recherche - Théorie des nombres
On the cardinality of subsequence sums II
[Sur le cardinal de sommes de sous-suites II]
Comptes Rendus. Mathématique, Volume 362 (2024), pp. 1279-1285.

Soit A=(a 1 ,...,a 1 r 1 ,a 2 ,...,a 2 r 2 ,...,a k ,...,a k r k )) une suite finie d’entiers avec a 1 <a 2 <<a k et r i 1(1ik). La somme de tous les termes d’une sous-suite B de A est appelée somme de sous-suite de A et nous la désignons par σ(B). Pour 0α i=1 k r i , soit Σ α (A)={σ(B)|Bunesous-suitedeAdelongueurα}. Dans cet article, nous résolvons complètement les deux problèmes posés par Bhanja et Pandey concernant la recherche de la borne inférieure de |Σ α (A)| et la détermination de la structure de la suite A pour laquelle la borne inférieure de |Σ α (A)| est atteinte.

Let A=(a 1 ,...,a 1 r 1 ,a 2 ,...,a 2 r 2 ,...,a k ,...,a k r k ) be a finite sequence of integers with a 1 <a 2 <<a k and r i 1(1ik). The sum of all terms of a subsequence B of A is called a subsequence sum of A and we denote it by σ(B). For 0α i=1 k r i , let Σ α (A)={σ(B)|BisasubsequenceofAoflengthα}. In this paper, we completely settle the two problems posed by Bhanja and Pandey about finding the optimal lower bound of |Σ α (A)| and determining the structure of the sequence A for which the lower bound of |Σ α (A)| is optimal.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.613
Classification : 11P70, 11B25
Keywords: Subsequence sums, direct problem, inverse problem
Mot clés : Sommes de sous-suites, problème direct, problème inverse

Xing-Wang Jiang 1 ; Ya-Li Li 2

1 Department of Mathematics, Luoyang Normal University, Luoyang 471934, P. R. China
2 School of Mathematics and Statistics, Henan University, Kaifeng 475001, P. R. China
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2024__362_G11_1279_0,
     author = {Xing-Wang Jiang and Ya-Li Li},
     title = {On the cardinality of subsequence sums {II}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1279--1285},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {362},
     year = {2024},
     doi = {10.5802/crmath.613},
     language = {en},
}
TY  - JOUR
AU  - Xing-Wang Jiang
AU  - Ya-Li Li
TI  - On the cardinality of subsequence sums II
JO  - Comptes Rendus. Mathématique
PY  - 2024
SP  - 1279
EP  - 1285
VL  - 362
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.613
LA  - en
ID  - CRMATH_2024__362_G11_1279_0
ER  - 
%0 Journal Article
%A Xing-Wang Jiang
%A Ya-Li Li
%T On the cardinality of subsequence sums II
%J Comptes Rendus. Mathématique
%D 2024
%P 1279-1285
%V 362
%I Académie des sciences, Paris
%R 10.5802/crmath.613
%G en
%F CRMATH_2024__362_G11_1279_0
Xing-Wang Jiang; Ya-Li Li. On the cardinality of subsequence sums II. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 1279-1285. doi : 10.5802/crmath.613. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.613/

[1] Jagannath Bhanja A note on sumsets and restricted sumsets, J. Integer Seq., Volume 24 (2021) no. 4, 21.4.2, 9 pages | MR | Zbl

[2] Jagannath Bhanja; Ram Krishna Pandey Inverse problems for certain subsequence sums in integers, Discrete Math., Volume 343 (2020) no. 12, 112148, 11 pages | DOI | MR | Zbl

[3] Jagannath Bhanja; Ram Krishna Pandey On the minimum size of subset and subsequence sums in integers, C. R. Math. Acad. Sci. Paris, Volume 360 (2022), pp. 1099-1111 | DOI | Numdam | MR | Zbl

[4] Himanshu Kumar Dwivedi; Raj Kumar Mistri Direct and inverse problems for subset sums with certain restrictions, Integers, Volume 22 (2022), A112, 13 pages | MR | Zbl

[5] Xing-Wang Jiang; Ya-Li Li On the cardinality of subsequence sums, Int. J. Number Theory, Volume 14 (2018) no. 3, pp. 661-668 | DOI | MR | Zbl

[6] Raj Kumar Mistri; Ram Krishna Pandey A generalization of sumsets of set of integers, J. Number Theory, Volume 143 (2014), pp. 334-356 | DOI | MR | Zbl

[7] Raj Kumar Mistri; Ram Krishna Pandey; Om Prakash Subsequence sums: direct and inverse problems, J. Number Theory, Volume 148 (2015), pp. 235-256 | DOI | MR | Zbl

[8] Melvyn B. Nathanson Inverse theorems for subset sums, Trans. Am. Math. Soc., Volume 347 (1995) no. 4, pp. 1409-1418 | DOI | MR | Zbl

[9] Melvyn B. Nathanson Additive number theory. Inverse problems and the geometry of sumsets, Graduate Texts in Mathematics, 165, Springer, 1996, xiv+293 pages | DOI | MR | Zbl

[10] Van H. Vu Some new results on subset sums, J. Number Theory, Volume 124 (2007) no. 1, pp. 229-233 | DOI | MR | Zbl

[11] Quan-Hui Yang; Yong-Gao Chen On the cardinality of general h-fold sumsets, Eur. J. Comb., Volume 47 (2015), pp. 103-114 | DOI | MR | Zbl

Cité par Sources :

Commentaires - Politique