[Sur le cardinal de sommes de sous-suites II]
Soit ) une suite finie d’entiers avec et . La somme de tous les termes d’une sous-suite de est appelée somme de sous-suite de et nous la désignons par . Pour , soit . Dans cet article, nous résolvons complètement les deux problèmes posés par Bhanja et Pandey concernant la recherche de la borne inférieure de et la détermination de la structure de la suite pour laquelle la borne inférieure de est atteinte.
Let be a finite sequence of integers with and . The sum of all terms of a subsequence of is called a subsequence sum of and we denote it by . For , let . In this paper, we completely settle the two problems posed by Bhanja and Pandey about finding the optimal lower bound of and determining the structure of the sequence for which the lower bound of is optimal.
Révisé le :
Accepté le :
Publié le :
Keywords: Subsequence sums, direct problem, inverse problem
Mot clés : Sommes de sous-suites, problème direct, problème inverse
Xing-Wang Jiang 1 ; Ya-Li Li 2
@article{CRMATH_2024__362_G11_1279_0, author = {Xing-Wang Jiang and Ya-Li Li}, title = {On the cardinality of subsequence sums {II}}, journal = {Comptes Rendus. Math\'ematique}, pages = {1279--1285}, publisher = {Acad\'emie des sciences, Paris}, volume = {362}, year = {2024}, doi = {10.5802/crmath.613}, language = {en}, }
Xing-Wang Jiang; Ya-Li Li. On the cardinality of subsequence sums II. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 1279-1285. doi : 10.5802/crmath.613. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.613/
[1] A note on sumsets and restricted sumsets, J. Integer Seq., Volume 24 (2021) no. 4, 21.4.2, 9 pages | MR | Zbl
[2] Inverse problems for certain subsequence sums in integers, Discrete Math., Volume 343 (2020) no. 12, 112148, 11 pages | DOI | MR | Zbl
[3] On the minimum size of subset and subsequence sums in integers, C. R. Math. Acad. Sci. Paris, Volume 360 (2022), pp. 1099-1111 | DOI | Numdam | MR | Zbl
[4] Direct and inverse problems for subset sums with certain restrictions, Integers, Volume 22 (2022), A112, 13 pages | MR | Zbl
[5] On the cardinality of subsequence sums, Int. J. Number Theory, Volume 14 (2018) no. 3, pp. 661-668 | DOI | MR | Zbl
[6] A generalization of sumsets of set of integers, J. Number Theory, Volume 143 (2014), pp. 334-356 | DOI | MR | Zbl
[7] Subsequence sums: direct and inverse problems, J. Number Theory, Volume 148 (2015), pp. 235-256 | DOI | MR | Zbl
[8] Inverse theorems for subset sums, Trans. Am. Math. Soc., Volume 347 (1995) no. 4, pp. 1409-1418 | DOI | MR | Zbl
[9] Additive number theory. Inverse problems and the geometry of sumsets, Graduate Texts in Mathematics, 165, Springer, 1996, xiv+293 pages | DOI | MR | Zbl
[10] Some new results on subset sums, J. Number Theory, Volume 124 (2007) no. 1, pp. 229-233 | DOI | MR | Zbl
[11] On the cardinality of general -fold sumsets, Eur. J. Comb., Volume 47 (2015), pp. 103-114 | DOI | MR | Zbl
Cité par Sources :
Commentaires - Politique