[Sur les solutions en série des équations intégrales en diffusion]
Nous étudions la validité de l’approche série de Neumann ou de Born pour résoudre l’équation de Helmholtz, et pour l’identification de coefficients dans des problèmes inverses de diffusion. Plus précisément, nous obtenons une condition nécessaire et suffisante sous laquelle la série converge fortement. Cette condition est beaucoup plus faible que celle utilisée traditionnellement. Nous examinons également le taux de convergence de la série. Notre approche utilise des techniques d’espace de réduction proposées par Suzuki [21]. De plus, nous proposons une méthode d’interpolation qui permet l’utilisation de la série de Neumann dans tous les cas. Enfin, nous fournissons plusieurs tests numériques avec différentes fonctions de milieu et valeurs de fréquence pour valider nos résultats théoriques.
We study the validity of the Neumann or Born series approach in solving the Helmholtz equation and coefficient identification in related inverse scattering problems. Precisely, we derive a sufficient and necessary condition under which the series is strongly convergent. We also investigate the rate of convergence of the series. The obtained condition is optimal and it can be much weaker than the traditional requirement for the convergence of the series. Our approach makes use of reduction space techniques proposed by Suzuki [21]. Furthermore we propose an interpolation method that allows the use of the Neumann series in all cases. Finally, we provide several numerical tests with different medium functions and frequency values to validate our theoretical results.
Révisé le :
Accepté le :
Publié le :
Keywords: Helmholtz equation, Born series, scattering
Mot clés : Équation de Helmholtz, série de Born, diffusion
Faouzi Triki 1 ; Mirza Karamehmedović 2
@article{CRMATH_2024__362_G9_1023_0, author = {Faouzi Triki and Mirza Karamehmedovi\'c}, title = {On the series solutions of integral equations in scattering}, journal = {Comptes Rendus. Math\'ematique}, pages = {1023--1035}, publisher = {Acad\'emie des sciences, Paris}, volume = {362}, year = {2024}, doi = {10.5802/crmath.621}, language = {en}, }
Faouzi Triki; Mirza Karamehmedović. On the series solutions of integral equations in scattering. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 1023-1035. doi : 10.5802/crmath.621. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.621/
[1] Multistatic imaging of extended targets, SIAM J. Imaging Sci., Volume 5 (2012) no. 2, pp. 564-600 | DOI | MR | Zbl
[2] Inverse Born series for the Calderon problem, Inverse Probl., Volume 28 (2012) no. 3, 035003, 16 pages | DOI | MR | Zbl
[3] Regularity and stability for the scattering map of a linearized inverse medium problem, J. Math. Anal. Appl., Volume 247 (2000) no. 1, pp. 255-271 | DOI | MR | Zbl
[4] Restarted inverse Born series for the Schrödinger problem with discrete internal measurements, Inverse Probl., Volume 30 (2014) no. 4, 045014, 29 pages | DOI | MR | Zbl
[5] Error estimates for the recursive linearization of inverse medium problems, J. Comput. Math., Volume 28 (2010) no. 6, pp. 725-744 | DOI | MR | Zbl
[6] Stability for the multifrequency inverse medium problem, J. Differ. Equations, Volume 269 (2020) no. 9, pp. 7106-7128 | DOI | MR | Zbl
[7] Inverse acoustic and electromagnetic scattering theory, Applied Mathematical Sciences, 93, Springer, 2019, xxii+518 pages (Fourth) | DOI | MR | Zbl
[8] Generalized inverses of random linear operators in Banach spaces, J. Math. Anal. Appl., Volume 83 (1981) no. 2, pp. 582-610 | DOI | MR | Zbl
[9] Perturbation theory for linear operators, Classics in Mathematics, Springer, 1995, xxii+619 pages | DOI | MR | Zbl
[10] Inverse Born series for scalar waves, J. Comput. Math., Volume 30 (2012) no. 6, pp. 601-614 | DOI | MR
[11] Convergence of the Born and inverse Born series for electromagnetic scattering, Appl. Anal., Volume 96 (2017) no. 10, pp. 1737-1748 | DOI | MR | Zbl
[12] Iterative solutions of boundary integral equations in acoustics, Proc. R. Soc. Lond., Ser. A, Volume 417 (1988) no. 1852, pp. 45-57 | DOI | MR | Zbl
[13] An iterative solution to acoustic scattering by rigid objects, J. Acoust. Soc. Am., Volume 84 (1988) no. 1, pp. 385-391 | DOI
[14] Convergent Born series for large refractive indices, J. Opt. Soc. Am. A, Volume 7 (1990) no. 5, pp. 890-897 | DOI
[15] Convergence and stability of the inverse scattering series for diffuse waves, Inverse Probl., Volume 24 (2008) no. 6, 065005, 16 pages | DOI | MR | Zbl
[16] Numerical studies of the inverse Born series for diffuse waves, Inverse Probl., Volume 25 (2009) no. 9, 095007, 18 pages | DOI | MR | Zbl
[17] Inverse Born series for the radiative transport equation, Inverse Probl., Volume 31 (2015) no. 9, 095009, 20 pages | DOI | MR | Zbl
[18] Inverse Born series, The Radon transform—the first 100 years and beyond (Radon Series on Computational and Applied Mathematics), Volume 22, Walter de Gruyter, 2019, pp. 273-295 | DOI | MR | Zbl
[19] A convergent Born series for solving the inhomogeneous Helmholtz equation in arbitrarily large media, J. Comput. Phys., Volume 322 (2016), pp. 113-124 | DOI | MR | Zbl
[20] Nonlinear inverse scattering and three-dimensional near-field optical imaging, Appl. Phys. Lett., Volume 89 (2006) no. 22, 221116 | DOI
[21] On the convergence of Neumann series in Banach space, Math. Ann., Volume 220 (1976) no. 2, pp. 143-146 | DOI | MR | Zbl
Cité par Sources :
Commentaires - Politique