Comptes Rendus
Article de recherche - Géométrie et Topologie
Quadratic Killing tensors on symmetric spaces which are not generated by Killing vector fields
[Tenseurs de Killing quadratiques sur des espaces symétriques qui ne sont pas générés par des champs de Killing vectoriels]
Comptes Rendus. Mathématique, Volume 362 (2024), pp. 1043-1049.

Chaque champ tensoriel de Killing sur l’espace de courbure constante et sur l’espace projectif complexe peut être décomposé en la somme des produits tensoriels symétriques des champs vectoriels de Killing (de manière équivalente, chaque polynôme des intégrales de vitesses du flux géodésique est un polynôme dans les intégrales linéaires). Ce fait a conduit à la question naturelle de savoir si cette propriété est partagée par les champs tensoriels de Killing sur tous les espaces symétriques riemanniens. Nous répondons à cette question par la négative en construisant des exemples explicites de champs tensoriels de Killing quadratiques qui ne sont pas des formes quadratiques dans les champs vectoriels de Killing sur les espaces projectifs quaternioniques P n ,n3, et sur le Cayley plan projectif 𝕆P 2 .

Every Killing tensor field on the space of constant curvature and on the complex projective space can be decomposed into the sum of symmetric tensor products of Killing vector fields (equivalently, every polynomial in velocities integral of the geodesic flow is a polynomial in the linear integrals). This fact led to the natural question on whether this property is shared by Killing tensor fields on all Riemannian symmetric spaces. We answer this question in the negative by constructing explicit examples of quadratic Killing tensor fields which are not quadratic forms in the Killing vector fields on the quaternionic projective spaces P n ,n3, and on the Cayley projective plane 𝕆P 2 .

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.624
Classification : 53C35, 53B20, 37J30, 37J35, 70H06, 22E46
Keywords: quadratic Killing tensor, symmetric space, Cayley projective plane, Quaternionic projective space
Mot clés : Tenseur de Killing quadratique, espace symétrique, plan projectif de Cayley, espace projectif quaternionique

Vladimir S. Matveev 1 ; Yuri Nikolayevsky 2

1 Fakultät für Mathematik und Informatik, Friedrich-Schiller-Universität, 07737 Jena, Germany
2 Department of Mathematical and Physical Sciences, La Trobe University, VIC 3086, Australia
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2024__362_G9_1043_0,
     author = {Vladimir S. Matveev and Yuri Nikolayevsky},
     title = {Quadratic {Killing} tensors on symmetric spaces which are not generated by {Killing} vector fields},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1043--1049},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {362},
     year = {2024},
     doi = {10.5802/crmath.624},
     language = {en},
}
TY  - JOUR
AU  - Vladimir S. Matveev
AU  - Yuri Nikolayevsky
TI  - Quadratic Killing tensors on symmetric spaces which are not generated by Killing vector fields
JO  - Comptes Rendus. Mathématique
PY  - 2024
SP  - 1043
EP  - 1049
VL  - 362
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.624
LA  - en
ID  - CRMATH_2024__362_G9_1043_0
ER  - 
%0 Journal Article
%A Vladimir S. Matveev
%A Yuri Nikolayevsky
%T Quadratic Killing tensors on symmetric spaces which are not generated by Killing vector fields
%J Comptes Rendus. Mathématique
%D 2024
%P 1043-1049
%V 362
%I Académie des sciences, Paris
%R 10.5802/crmath.624
%G en
%F CRMATH_2024__362_G9_1043_0
Vladimir S. Matveev; Yuri Nikolayevsky. Quadratic Killing tensors on symmetric spaces which are not generated by Killing vector fields. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 1043-1049. doi : 10.5802/crmath.624. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.624/

[1] John C. Baez The octonions, Bull. Amer. Math. Soc. (N.S.), Volume 39 (2002) no. 2, pp. 145-205 | DOI | MR | Zbl

[2] Alexey Bolsinov; Vladimir S. Matveev; Eva Miranda; Serge Tabachnikov Open problems, questions and challenges in finite-dimensional integrable systems, Philos. Trans. Roy. Soc. A, Volume 376 (2018) no. 2131, 20170430, p. 40 | DOI | MR | Zbl

[3] Michael Eastwood Killing tensors on complex projective space (2023) (https://arxiv.org/abs/2309.00589)

[4] Hans Freudenthal Zur ebenen Oktavengeometrie, Nederl. Akad. Wetensch. Proc. Ser. A, Volume 15 (1953), pp. 195-200 | MR | Zbl

[5] F. Reese Harvey Spinors and calibrations, Perspectives in Mathematics, 9, Academic Press, Inc., 1990, xiv+323 pages | MR | Zbl

[6] Raymond G. McLenaghan; Robert Milson; Roman G. Smirnov Killing tensors as irreducible representations of the general linear group, C. R. Math. Acad. Sci. Paris, Volume 339 (2004) no. 9, pp. 621-624 | DOI | MR | Zbl

[7] Hans Samelson Notes on Lie algebras, Universitext, Springer-Verlag, 1990, xii+162 pages | DOI | MR | Zbl

[8] Takeshi Sumitomo; Kwoichi Tandai Killing tensor fields on the standard sphere and spectra of SO(n+1)/(SO(n-1)×SO(2)) and O(n+1)/(O(n-1)×O(2)), Osaka Math. J., Volume 20 (1983) no. 1, pp. 51-78 | MR | Zbl

[9] Takeshi Sumitomo; Kwoichi Tandai On the centralizer of the Laplacian of P n (C) and the spectrum of complex Grassmann manifold G 2,n-1 (C), Osaka J. Math., Volume 22 (1985) no. 1, pp. 123-155 | MR | Zbl

[10] G. Thompson Killing tensors in spaces of constant curvature, J. Math. Phys., Volume 27 (1986) no. 11, pp. 2693-2699 | DOI | MR | Zbl

[11] Èrnest B. Vinberg; Arkadiĭ L. Onishchik A seminar on Lie groups and algebraic groups, URSS, Moscow, 1995, 344 pages | MR | Zbl

Cité par Sources :

Commentaires - Politique