[Tenseurs de Killing quadratiques sur des espaces symétriques qui ne sont pas générés par des champs de Killing vectoriels]
Chaque champ tensoriel de Killing sur l’espace de courbure constante et sur l’espace projectif complexe peut être décomposé en la somme des produits tensoriels symétriques des champs vectoriels de Killing (de manière équivalente, chaque polynôme des intégrales de vitesses du flux géodésique est un polynôme dans les intégrales linéaires). Ce fait a conduit à la question naturelle de savoir si cette propriété est partagée par les champs tensoriels de Killing sur tous les espaces symétriques riemanniens. Nous répondons à cette question par la négative en construisant des exemples explicites de champs tensoriels de Killing quadratiques qui ne sont pas des formes quadratiques dans les champs vectoriels de Killing sur les espaces projectifs quaternioniques , et sur le Cayley plan projectif .
Every Killing tensor field on the space of constant curvature and on the complex projective space can be decomposed into the sum of symmetric tensor products of Killing vector fields (equivalently, every polynomial in velocities integral of the geodesic flow is a polynomial in the linear integrals). This fact led to the natural question on whether this property is shared by Killing tensor fields on all Riemannian symmetric spaces. We answer this question in the negative by constructing explicit examples of quadratic Killing tensor fields which are not quadratic forms in the Killing vector fields on the quaternionic projective spaces , and on the Cayley projective plane .
Accepté le :
Publié le :
Keywords: quadratic Killing tensor, symmetric space, Cayley projective plane, Quaternionic projective space
Mot clés : Tenseur de Killing quadratique, espace symétrique, plan projectif de Cayley, espace projectif quaternionique
Vladimir S. Matveev 1 ; Yuri Nikolayevsky 2
@article{CRMATH_2024__362_G9_1043_0, author = {Vladimir S. Matveev and Yuri Nikolayevsky}, title = {Quadratic {Killing} tensors on symmetric spaces which are not generated by {Killing} vector fields}, journal = {Comptes Rendus. Math\'ematique}, pages = {1043--1049}, publisher = {Acad\'emie des sciences, Paris}, volume = {362}, year = {2024}, doi = {10.5802/crmath.624}, language = {en}, }
TY - JOUR AU - Vladimir S. Matveev AU - Yuri Nikolayevsky TI - Quadratic Killing tensors on symmetric spaces which are not generated by Killing vector fields JO - Comptes Rendus. Mathématique PY - 2024 SP - 1043 EP - 1049 VL - 362 PB - Académie des sciences, Paris DO - 10.5802/crmath.624 LA - en ID - CRMATH_2024__362_G9_1043_0 ER -
%0 Journal Article %A Vladimir S. Matveev %A Yuri Nikolayevsky %T Quadratic Killing tensors on symmetric spaces which are not generated by Killing vector fields %J Comptes Rendus. Mathématique %D 2024 %P 1043-1049 %V 362 %I Académie des sciences, Paris %R 10.5802/crmath.624 %G en %F CRMATH_2024__362_G9_1043_0
Vladimir S. Matveev; Yuri Nikolayevsky. Quadratic Killing tensors on symmetric spaces which are not generated by Killing vector fields. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 1043-1049. doi : 10.5802/crmath.624. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.624/
[1] The octonions, Bull. Amer. Math. Soc. (N.S.), Volume 39 (2002) no. 2, pp. 145-205 | DOI | MR | Zbl
[2] Open problems, questions and challenges in finite-dimensional integrable systems, Philos. Trans. Roy. Soc. A, Volume 376 (2018) no. 2131, 20170430, p. 40 | DOI | MR | Zbl
[3] Killing tensors on complex projective space (2023) (https://arxiv.org/abs/2309.00589)
[4] Zur ebenen Oktavengeometrie, Nederl. Akad. Wetensch. Proc. Ser. A, Volume 15 (1953), pp. 195-200 | MR | Zbl
[5] Spinors and calibrations, Perspectives in Mathematics, 9, Academic Press, Inc., 1990, xiv+323 pages | MR | Zbl
[6] Killing tensors as irreducible representations of the general linear group, C. R. Math. Acad. Sci. Paris, Volume 339 (2004) no. 9, pp. 621-624 | DOI | MR | Zbl
[7] Notes on Lie algebras, Universitext, Springer-Verlag, 1990, xii+162 pages | DOI | MR | Zbl
[8] Killing tensor fields on the standard sphere and spectra of and , Osaka Math. J., Volume 20 (1983) no. 1, pp. 51-78 | MR | Zbl
[9] On the centralizer of the Laplacian of and the spectrum of complex Grassmann manifold , Osaka J. Math., Volume 22 (1985) no. 1, pp. 123-155 | MR | Zbl
[10] Killing tensors in spaces of constant curvature, J. Math. Phys., Volume 27 (1986) no. 11, pp. 2693-2699 | DOI | MR | Zbl
[11] A seminar on Lie groups and algebraic groups, URSS, Moscow, 1995, 344 pages | MR | Zbl
Cité par Sources :
Commentaires - Politique