[Estimations pour les équations non-locales de type chaleur et de type onde sur des groupes localement compacts]
On montre les estimations de norme pour les solutions des équations dites « de type chaleur » et « de type onde » définies sur un groupe localement compact, séparable et unimodulaire en utilisant un opérateur intégro-différentiel sur le temps et un opérateur positif invariant á gauche quelconque sur De plus, on donne des estimations de temps asymptotiques pour ces solutions, qui deviennent des estimations optimales dans quelques cas.
We prove the norm estimates for the solutions of heat and wave type equations on a locally compact separable unimodular group by using an integro-differential operator in time and any positive left invariant operator (maybe unbounded) on . We complement our studies by giving asymptotic time estimates for the solutions, which in some cases are sharp.
Accepté le :
Publié le :
Keywords: Locally compact groups, heat type equations, wave type equations, asymptotic estimates, non-local operators
Mot clés : Groupes localement compacts, équations de type chaleur, équations de type onde, estimations asymptotiques, opérateurs non locaux
Santiago Gómez Cobos 1 ; Joel E. Restrepo 1, 2 ; Michael Ruzhansky 1, 3
@article{CRMATH_2024__362_G11_1331_0, author = {Santiago G\'omez Cobos and Joel E. Restrepo and Michael Ruzhansky}, title = {$L^p-L^q$ estimates for non-local heat and wave type equations on locally compact groups}, journal = {Comptes Rendus. Math\'ematique}, pages = {1331--1336}, publisher = {Acad\'emie des sciences, Paris}, volume = {362}, year = {2024}, doi = {10.5802/crmath.643}, language = {en}, }
TY - JOUR AU - Santiago Gómez Cobos AU - Joel E. Restrepo AU - Michael Ruzhansky TI - $L^p-L^q$ estimates for non-local heat and wave type equations on locally compact groups JO - Comptes Rendus. Mathématique PY - 2024 SP - 1331 EP - 1336 VL - 362 PB - Académie des sciences, Paris DO - 10.5802/crmath.643 LA - en ID - CRMATH_2024__362_G11_1331_0 ER -
%0 Journal Article %A Santiago Gómez Cobos %A Joel E. Restrepo %A Michael Ruzhansky %T $L^p-L^q$ estimates for non-local heat and wave type equations on locally compact groups %J Comptes Rendus. Mathématique %D 2024 %P 1331-1336 %V 362 %I Académie des sciences, Paris %R 10.5802/crmath.643 %G en %F CRMATH_2024__362_G11_1331_0
Santiago Gómez Cobos; Joel E. Restrepo; Michael Ruzhansky. $L^p-L^q$ estimates for non-local heat and wave type equations on locally compact groups. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 1331-1336. doi : 10.5802/crmath.643. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.643/
[1] - multipliers on locally compact groups, J. Funct. Anal., Volume 278 (2020) no. 3, 108324, 49 pages | DOI | MR | Zbl
[2] A short course on spectral theory, Graduate Texts in Mathematics, 209, Springer, 2002, x+135 pages | DOI | MR
[3] Fractional Evolution Equations in Banach Spaces, Ph. D. Thesis, Eindhoven University of Technology (2001)
[4] Fractional differential equations: a novel study of local and global solutions in Banach spaces, Ph. D. Thesis, Universidade de São Paulo, São Carlos (2013)
[5] A note on spectral multipliers on Engel and Cartan groups, Proc. Am. Math. Soc., Volume 150 (2022) no. 5, pp. 2259-2270 | DOI | MR | Zbl
[6] Von Neumann algebras. Transl. from the French by F. Jellett, North-Holland Mathematical Library, 27, North-Holland, 1981, xxxviii+437 pages | MR | Zbl
[7] Generalized -numbers of -measurable operators, Pac. J. Math., Volume 123 (1986) no. 2, pp. 269-300 | DOI | MR | Zbl
[8] Mittag–Leffler functions, related topics and applications, Springer Monographs in Mathematics, Springer, 2020, xvi+540 pages | DOI | MR | Zbl
[9] Sub-Laplacian eigenvalue bounds on sub-Riemannian manifolds, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 16 (2016) no. 4, pp. 1049-1092 | DOI | MR | Zbl
[10] Non-commutative Lorentz spaces associated with a semi-finite von Neumann algebra and applications, Proc. Japan Acad., Ser. A, Volume 57 (1981) no. 6, pp. 303-306 | DOI | MR | Zbl
[11] Decay estimates for time-fractional and other non-local in time subdiffusion equations in , Math. Ann., Volume 366 (2016) no. 3-4, pp. 941-979 | DOI | MR | Zbl
[12] On rings of operators, Ann. Math., Volume 37 (1936) no. 1, pp. 116-229 | DOI | MR | Zbl
[13] On rings of operators. II, Trans. Am. Math. Soc., Volume 41 (1937) no. 2, pp. 208-248 | DOI | MR | Zbl
[14] Evolutionary integral equations and applications, Monographs in Mathematics, 87, Birkhäuser, 1993, xxvi+366 pages | DOI | MR | Zbl
[15] Harmonic and anharmonic oscillators on the Heisenberg group, J. Math. Phys., Volume 63 (2022) no. 11, 111509, 23 pages | DOI | MR | Zbl
[16] An update on the - norms of spectral multipliers on unimodular Lie groups, Arch. Math., Volume 120 (2023) no. 5, pp. 507-520 | DOI | MR | Zbl
[17] Spaces Associated with Von Neumann Algebras (1981)
Cité par Sources :
Commentaires - Politique