[Estimations
On montre les estimations de norme
We prove the
Accepté le :
Publié le :
DOI : 10.5802/crmath.643
Keywords: Locally compact groups, heat type equations, wave type equations, asymptotic estimates, non-local operators
Mots-clés : Groupes localement compacts, équations de type chaleur, équations de type onde, estimations asymptotiques, opérateurs non locaux
Santiago Gómez Cobos 1 ; Joel E. Restrepo 1, 2 ; Michael Ruzhansky 1, 3

@article{CRMATH_2024__362_G11_1331_0, author = {Santiago G\'omez Cobos and Joel E. Restrepo and Michael Ruzhansky}, title = {$L^p-L^q$ estimates for non-local heat and wave type equations on locally compact groups}, journal = {Comptes Rendus. Math\'ematique}, pages = {1331--1336}, publisher = {Acad\'emie des sciences, Paris}, volume = {362}, year = {2024}, doi = {10.5802/crmath.643}, zbl = {07945476}, language = {en}, }
TY - JOUR AU - Santiago Gómez Cobos AU - Joel E. Restrepo AU - Michael Ruzhansky TI - $L^p-L^q$ estimates for non-local heat and wave type equations on locally compact groups JO - Comptes Rendus. Mathématique PY - 2024 SP - 1331 EP - 1336 VL - 362 PB - Académie des sciences, Paris DO - 10.5802/crmath.643 LA - en ID - CRMATH_2024__362_G11_1331_0 ER -
%0 Journal Article %A Santiago Gómez Cobos %A Joel E. Restrepo %A Michael Ruzhansky %T $L^p-L^q$ estimates for non-local heat and wave type equations on locally compact groups %J Comptes Rendus. Mathématique %D 2024 %P 1331-1336 %V 362 %I Académie des sciences, Paris %R 10.5802/crmath.643 %G en %F CRMATH_2024__362_G11_1331_0
Santiago Gómez Cobos; Joel E. Restrepo; Michael Ruzhansky. $L^p-L^q$ estimates for non-local heat and wave type equations on locally compact groups. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 1331-1336. doi : 10.5802/crmath.643. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.643/
[1]
[2] A short course on spectral theory, Graduate Texts in Mathematics, 209, Springer, 2002, x+135 pages | DOI | MR
[3] Fractional Evolution Equations in Banach Spaces, Ph. D. Thesis, Eindhoven University of Technology (2001) | MR
[4] Fractional differential equations: a novel study of local and global solutions in Banach spaces, Ph. D. Thesis, Universidade de São Paulo, São Carlos (2013)
[5] A note on spectral multipliers on Engel and Cartan groups, Proc. Am. Math. Soc., Volume 150 (2022) no. 5, pp. 2259-2270 | DOI | MR | Zbl
[6] Von Neumann algebras. Transl. from the French by F. Jellett, North-Holland Mathematical Library, 27, North-Holland, 1981, xxxviii+437 pages | MR | Zbl
[7] Generalized
[8] Mittag–Leffler functions, related topics and applications, Springer Monographs in Mathematics, Springer, 2020, xvi+540 pages | DOI | MR | Zbl
[9] Sub-Laplacian eigenvalue bounds on sub-Riemannian manifolds, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 16 (2016) no. 4, pp. 1049-1092 | DOI | MR | Zbl
[10] Non-commutative Lorentz spaces associated with a semi-finite von Neumann algebra and applications, Proc. Japan Acad., Ser. A, Volume 57 (1981) no. 6, pp. 303-306 | DOI | MR | Zbl
[11] Decay estimates for time-fractional and other non-local in time subdiffusion equations in
[12] On rings of operators, Ann. Math., Volume 37 (1936) no. 1, pp. 116-229 | DOI | MR | Zbl
[13] On rings of operators. II, Trans. Am. Math. Soc., Volume 41 (1937) no. 2, pp. 208-248 | DOI | MR | Zbl
[14] Evolutionary integral equations and applications, Monographs in Mathematics, 87, Birkhäuser, 1993, xxvi+366 pages | DOI | MR | Zbl
[15] Harmonic and anharmonic oscillators on the Heisenberg group, J. Math. Phys., Volume 63 (2022) no. 11, 111509, 23 pages | DOI | MR | Zbl
[16] An update on the
[17]
Cité par Sources :
Commentaires - Politique