[Intégrabilité par compensation sur un tore ; Estimation a priori pour les écoulements gazeux périodiques en espace]
Nous étendons notre théorie d’Intégrabilité par Compensation au cas des domaines , produits d’un facteur linéaire et d’un tore plat. Nous appliquons les résultats abstraits à deux contextes, pour lesquels est associé à une variable de temps, tandis que est la dimension de l’espace physique ambiant. Le premier est la dynamique des gaz non visqueux, gouvernée par les équations d’Euler, lorsque les données initiales sont périodiques en espace. Nous obtenons une estimation a priori de notre quantité favorite . Le second est la dynamique des sphères dures, dans une boîte périodique . Nous obtenons une estimation pondérée du nombre moyen de collisions par unité de temps, pourvu que la « densité linéique » ( particules de rayon ) soit inférieure à un certain seuil.
We extend our theory of Compensated Integrability of positive symmetric tensors, to the case where the domain is the product of a linear space and of a torus , being a lattice of . We apply our abstract results in two contexts, for which is associated with a time variable, while is a space dimension. On the one hand to -dimensional inviscid gas dynamics, governed by the Euler equations, when the initial data is space-periodic; we obtain an a priori space-time estimate of our beloved quantity . On the other hand to hard spheres dynamics in a periodic box . We obtain a weighted estimate of the average number of collisions per unit time, provided that the “linear density” ( particles of radius ) is smaller than some threshold.
Accepté le :
Publié le :
Keywords: Compensated integrability, perfect gas, billiard, periodic data
Mot clés : Intégrabilité par compensation, gaz parfait, billard, données périodiques
Denis Serre 1
@article{CRMATH_2024__362_G11_1425_0, author = {Denis Serre}, title = {Compensated integrability on tori; \protect\emph{a priori} estimate for space-periodic gas flows}, journal = {Comptes Rendus. Math\'ematique}, pages = {1425--1444}, publisher = {Acad\'emie des sciences, Paris}, volume = {362}, year = {2024}, doi = {10.5802/crmath.654}, language = {en}, }
Denis Serre. Compensated integrability on tori; a priori estimate for space-periodic gas flows. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 1425-1444. doi : 10.5802/crmath.654. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.654/
[1] The infinite hard sphere system, M.S. Thesis, University of California at Berkeley
[2] Dimensional estimates and rectifiability for measures satisfying linear PDE constraints, Geom. Funct. Anal., Volume 29 (2019) no. 3, pp. 639-658 | DOI | MR | Zbl
[3] Uniform estimates on the number of collisions in semi-dispersing billiards, Ann. Math. (2), Volume 147 (1998) no. 3, pp. 695-708 | DOI | MR | Zbl
[4] Examples of exponentially many collisions in a hard ball system, Ergodic Theory Dyn. Syst., Volume 41 (2021) no. 9, pp. 2754-2769 | DOI | MR | Zbl
[5] An improved upper bound on the number of billiard ball collisions, Comm. Math. Phys., Volume 391 (2022) no. 1, pp. 107-117 | DOI | MR | Zbl
[6] Extremum problems with inequalities as subsidiary conditions, Traces and emergence of nonlinear programming (T. Giorgi, ed.), Birkhäuser/Springer Basel AG, Basel, 2014, pp. 198-215 | MR | Zbl
[7] Some existence results for fully nonlinear elliptic equations of Monge–Ampère type, Comm. Pure Appl. Math., Volume 43 (1990) no. 2, pp. 233-271 | DOI | MR | Zbl
[8] The Minkowski multidimensional problem, Scripta Series in Mathematics, V. H. Winston & Sons, Washington, DC; Halsted Press (John Wiley & Sons), New York-Toronto-London, 1978, 106 pages | MR | Zbl
[9] Matrices, Graduate Texts in Mathematics, 216, Springer, New York, 2010, xiv+289 pages (Theory and applications) | DOI | MR | Zbl
[10] Divergence-free positive symmetric tensors and fluid dynamics, Ann. Inst. H. Poincaré C Anal. Non Linéaire, Volume 35 (2018) no. 5, pp. 1209-1234 | DOI | Numdam | MR | Zbl
[11] Compensated integrability. Applications to the Vlasov–Poisson equation and other models in mathematical physics, J. Math. Pures Appl. (9), Volume 127 (2019), pp. 67-88 | DOI | MR | Zbl
[12] Hard spheres dynamics: weak vs strong collisions, Arch. Ration. Mech. Anal., Volume 240 (2021) no. 1, pp. 243-264 | DOI | MR | Zbl
[13] Divergence-free tensors and cofactors in geometry and fluid dynamics, Mathematics going forward—collected mathematical brushstrokes (Lecture Notes in Math.), Volume 2313, Springer, Cham, 2023, pp. 461-477 | DOI | MR | Zbl
[14] Hyperbolic billiards, Proceedings of the International Congress of Mathematicians, Vol. I, II (Kyoto, 1990), Math. Soc. Japan, Tokyo (1991), pp. 249-260 | MR | Zbl
[15] On systems of particles with finite-range and/or repulsive interactions, Comm. Math. Phys., Volume 69 (1979) no. 1, pp. 31-56 | DOI | MR
Cité par Sources :
Commentaires - Politique