Comptes Rendus
Article de recherche - Théorie des nombres
A note on the exact formulas for certain 2-color partitions
[Note sur les formules exactes de certaines partitions à 2 couleurs]
Comptes Rendus. Mathématique, Volume 362 (2024), pp. 1485-1490.

Soit p23 un nombre premier et ap(n) compte le nombre de partitions de n où les parties qui sont multiples de p donnent 2 couleurs. En utilisant un résultat de Sussman, nous dérivons la formule exacte pour ap(n) et obtenons une formule asymptotique pour logap(n). Nos résultats étendent partiellement le travail de Mauth, qui a prouvé la formule asymptotique pour loga2(n) conjecturée par Banerjee et al.

Let p23 be a prime and ap(n) count the number of partitions of n where parts that are multiple of p come up with 2 colors. Using a result of Sussman, we derive the exact formula for ap(n) and obtain an asymptotic formula for logap(n). Our results partially extend the work of Mauth, who proved the asymptotic formula for loga2(n) conjectured by Banerjee et al.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.658
Classification : 11P55, 11P82, 05A16
Keywords: Circle method, η-quotients, partitions, asymptotic formula
Mots-clés : Méthode des cercles, η-quotients, partitions, formule asymptotique

Russelle Guadalupe 1

1 Institute of Mathematics, University of the Philippines-Diliman, Quezon City, 1101, Philippines
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2024__362_G11_1485_0,
     author = {Russelle Guadalupe},
     title = {A note on the exact formulas for certain $2$-color partitions},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1485--1490},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {362},
     year = {2024},
     doi = {10.5802/crmath.658},
     zbl = {07945490},
     language = {en},
}
TY  - JOUR
AU  - Russelle Guadalupe
TI  - A note on the exact formulas for certain $2$-color partitions
JO  - Comptes Rendus. Mathématique
PY  - 2024
SP  - 1485
EP  - 1490
VL  - 362
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.658
LA  - en
ID  - CRMATH_2024__362_G11_1485_0
ER  - 
%0 Journal Article
%A Russelle Guadalupe
%T A note on the exact formulas for certain $2$-color partitions
%J Comptes Rendus. Mathématique
%D 2024
%P 1485-1490
%V 362
%I Académie des sciences, Paris
%R 10.5802/crmath.658
%G en
%F CRMATH_2024__362_G11_1485_0
Russelle Guadalupe. A note on the exact formulas for certain $2$-color partitions. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 1485-1490. doi : 10.5802/crmath.658. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.658/

[1] Zakir Ahmed; Nayandeep Deka Baruah; Manosij Ghosh Dastidar New congruences modulo 5 for the number of 2-color partitions, J. Number Theory, Volume 157 (2015), pp. 184-198 | DOI | MR | Zbl

[2] Koustav Banerjee Inequalities for the modified Bessel function of first kind of non-negative order, J. Math. Anal. Appl., Volume 524 (2023) no. 1, 127082, 28 pages | DOI | MR | Zbl

[3] Kathrin Bringmann; Ken Ono Coefficients of harmonic Maass forms, Partitions, q-series, and modular forms (Developments in Mathematics), Volume 23, Springer, 2012, pp. 23-38 | DOI | MR | Zbl

[4] Koustav Banerjee; Peter Paule; Cristian-Silviu Radu; WenHuan Zeng New inequalities for p(n) and logp(n), Ramanujan J., Volume 61 (2023) no. 4, pp. 1295-1338 | DOI | MR | Zbl

[5] O-Yeat Chan Some asymptotics for cranks, Acta Arith., Volume 120 (2005) no. 2, pp. 107-143 | DOI | MR | Zbl

[6] Shane Chern Asymptotics for the Fourier coefficients of eta-quotients, J. Number Theory, Volume 199 (2019), pp. 168-191 | DOI | MR | Zbl

[7] William Y. C. Chen; Larry X. W. Wang; Gary Y. B. Xie Finite differences of the logarithm of the partition function, Math. Comput., Volume 85 (2016) no. 298, pp. 825-847 | DOI | MR | Zbl

[8] Stephen DeSalvo; Igor Pak Log-concavity of the partition function, Ramanujan J., Volume 38 (2015) no. 1, pp. 61-73 | DOI | MR | Zbl

[9] G. H. Hardy; S. Ramanujan Asymptotic formulae in combinatory analysis., Proc. Lond. Math. Soc., Volume 17 (1918), pp. 75-115 | DOI | MR

[10] B. Kim A crank analog on a certain kind of partition function arising from the cubic continued fraction (2008) (preprint, pp. 13)

[11] V. Kotesovec A method of finding the asymptotics of q-series based on the convolution of generating functions (2015) (https://arxiv.org/abs/1509.08708)

[12] Lukas Mauth Exact formula for cubic partitions, Ramanujan J., Volume 64 (2024) no. 4, pp. 1323-1334 | DOI | MR | Zbl

[13] Ken Ono The web of modularity: arithmetic of the coefficients of modular forms and q-series, CBMS Regional Conference Series in Mathematics, 102, Published for the Conference Board of the Mathematical Sciences, by the American Mathematical Society, 2004, viii+216 pages | MR | Zbl

[14] Hans Rademacher On the partition function p(n), Proc. Lond. Math. Soc., Volume 43 (1937), pp. 241-254 | DOI | MR | Zbl

[15] E. Sussman Rademacher Series for η-quotients (2017) (https://arxiv.org/abs/1710.03415)

[16] Herbert S. Zuckerman On the coefficients of certain modular forms belonging to subgroups of the modular group, Trans. Am. Math. Soc., Volume 45 (1939) no. 2, pp. 298-321 | DOI | MR | Zbl

Cité par Sources :

Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: