[Note sur les formules exactes de certaines partitions à 2 couleurs]
Soit un nombre premier et compte le nombre de partitions de n où les parties qui sont multiples de donnent couleurs. En utilisant un résultat de Sussman, nous dérivons la formule exacte pour et obtenons une formule asymptotique pour . Nos résultats étendent partiellement le travail de Mauth, qui a prouvé la formule asymptotique pour conjecturée par Banerjee et al.
Let be a prime and count the number of partitions of where parts that are multiple of come up with colors. Using a result of Sussman, we derive the exact formula for and obtain an asymptotic formula for . Our results partially extend the work of Mauth, who proved the asymptotic formula for conjectured by Banerjee et al.
Révisé le :
Accepté le :
Publié le :
Keywords: Circle method, $\eta $-quotients, partitions, asymptotic formula
Mot clés : Méthode des cercles, $\eta $-quotients, partitions, formule asymptotique
Russelle Guadalupe 1
@article{CRMATH_2024__362_G11_1485_0, author = {Russelle Guadalupe}, title = {A note on the exact formulas for certain $2$-color partitions}, journal = {Comptes Rendus. Math\'ematique}, pages = {1485--1490}, publisher = {Acad\'emie des sciences, Paris}, volume = {362}, year = {2024}, doi = {10.5802/crmath.658}, language = {en}, }
Russelle Guadalupe. A note on the exact formulas for certain $2$-color partitions. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 1485-1490. doi : 10.5802/crmath.658. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.658/
[1] New congruences modulo 5 for the number of 2-color partitions, J. Number Theory, Volume 157 (2015), pp. 184-198 | DOI | MR | Zbl
[2] Inequalities for the modified Bessel function of first kind of non-negative order, J. Math. Anal. Appl., Volume 524 (2023) no. 1, 127082, 28 pages | DOI | MR | Zbl
[3] Coefficients of harmonic Maass forms, Partitions, -series, and modular forms (Developments in Mathematics), Volume 23, Springer, 2012, pp. 23-38 | DOI | MR | Zbl
[4] New inequalities for and , Ramanujan J., Volume 61 (2023) no. 4, pp. 1295-1338 | DOI | MR | Zbl
[5] Some asymptotics for cranks, Acta Arith., Volume 120 (2005) no. 2, pp. 107-143 | DOI | MR | Zbl
[6] Asymptotics for the Fourier coefficients of eta-quotients, J. Number Theory, Volume 199 (2019), pp. 168-191 | DOI | MR | Zbl
[7] Finite differences of the logarithm of the partition function, Math. Comput., Volume 85 (2016) no. 298, pp. 825-847 | DOI | MR | Zbl
[8] Log-concavity of the partition function, Ramanujan J., Volume 38 (2015) no. 1, pp. 61-73 | DOI | MR | Zbl
[9] Asymptotic formulae in combinatory analysis., Proc. Lond. Math. Soc., Volume 17 (1918), pp. 75-115 | DOI
[10] A crank analog on a certain kind of partition function arising from the cubic continued fraction (2008) (preprint, pp. 13)
[11] A method of finding the asymptotics of q-series based on the convolution of generating functions (2015) (https://arxiv.org/abs/1509.08708)
[12] Exact formula for cubic partitions, Ramanujan J., Volume 64 (2024) no. 4, pp. 1323-1334 | DOI | MR | Zbl
[13] The web of modularity: arithmetic of the coefficients of modular forms and -series, CBMS Regional Conference Series in Mathematics, 102, Published for the Conference Board of the Mathematical Sciences, by the American Mathematical Society, 2004, viii+216 pages | MR | Zbl
[14] On the partition function , Proc. Lond. Math. Soc., Volume 43 (1937), pp. 241-254 | DOI | Zbl
[15] Rademacher Series for -quotients (2017) (https://arxiv.org/abs/1710.03415)
[16] On the coefficients of certain modular forms belonging to subgroups of the modular group, Trans. Am. Math. Soc., Volume 45 (1939) no. 2, pp. 298-321 | DOI | MR | Zbl
Cité par Sources :
Commentaires - Politique