Comptes Rendus
Article de recherche - Algèbre
Bialgebra cohomology and exact sequences
[Cohomologie de bigèbres et suites exactes]
Comptes Rendus. Mathématique, Volume 362 (2024), pp. 1475-1483.

Nous montrons comment les cohomologies de Gertstenhaber–Schack de deux algèbres de Hopf imbriquées dans une suite exacte courte sont reliées, quand le troisième facteur est cosemisimple de dimension finie. Nous en déduisons une preuve rapide du calcul de la cohomologie de bigèbre des algèbres de Hopf cosouveraines universelles dans le cas générique, établi récemment par Baraquin, Franz, Gerhold, Kula et Tobolski.

We show how the bialgebra cohomologies of two Hopf algebras involved in an exact sequence are related, when the third factor is finite-dimensional cosemisimple. As an application, we provide a short proof of the computation of the bialgebra cohomology of the universal cosovereign Hopf algebras in the generic (cosemisimple) case, done recently by Baraquin, Franz, Gerhold, Kula and Tobolski.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.659
Classification : 16T05, 16E40
Keywords: Hopf algebras, bialgebra cohomology, Yetter–Drinfeld modules
Mots-clés : Algèbres de Hopf, cohomologie des bigèbres, modules de Yetter–Drinfeld

Julien Bichon 1

1 Université Clermont Auvergne, CNRS, LMBP, F-63000 Clermont-Ferrand, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2024__362_G11_1475_0,
     author = {Julien Bichon},
     title = {Bialgebra cohomology and exact sequences},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1475--1483},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {362},
     year = {2024},
     doi = {10.5802/crmath.659},
     zbl = {07945489},
     language = {en},
}
TY  - JOUR
AU  - Julien Bichon
TI  - Bialgebra cohomology and exact sequences
JO  - Comptes Rendus. Mathématique
PY  - 2024
SP  - 1475
EP  - 1483
VL  - 362
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.659
LA  - en
ID  - CRMATH_2024__362_G11_1475_0
ER  - 
%0 Journal Article
%A Julien Bichon
%T Bialgebra cohomology and exact sequences
%J Comptes Rendus. Mathématique
%D 2024
%P 1475-1483
%V 362
%I Académie des sciences, Paris
%R 10.5802/crmath.659
%G en
%F CRMATH_2024__362_G11_1475_0
Julien Bichon. Bialgebra cohomology and exact sequences. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 1475-1483. doi : 10.5802/crmath.659. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.659/

[2] Teodor Banica Le groupe quantique compact libre U(n), Commun. Math. Phys., Volume 190 (1997) no. 1, pp. 143-172 | DOI | MR | Zbl

[3] Isabelle Baraquin; Uwe Franz; Malte Gerhold; Anna Kula; Mariusz Tobolski Free resolutions for free unitary quantum groups and universal cosovereign Hopf algebras, J. Lond. Math. Soc., Volume 109 (2024) no. 4, e12898, 50 pages | DOI | MR | Zbl

[4] Julien Bichon The representation category of the quantum group of a non-degenerate bilinear form, Commun. Algebra, Volume 31 (2003) no. 10, pp. 4831-4851 | DOI | MR | Zbl

[5] Julien Bichon Co-representation theory of universal co-sovereign Hopf algebras, J. Lond. Math. Soc., Volume 75 (2007) no. 1, pp. 83-98 | DOI | MR | Zbl

[6] Julien Bichon Hochschild homology of Hopf algebras and free Yetter–Drinfeld resolutions of the counit, Compos. Math., Volume 149 (2013) no. 4, pp. 658-678 | DOI | MR | Zbl

[7] Julien Bichon Hopf–Galois objects and cogroupoids, Rev. Unión Mat. Argent., Volume 55 (2014) no. 2, pp. 11-69 | MR | Zbl

[8] Julien Bichon Gerstenhaber–Schack and Hochschild cohomologiesof Hopf algebras, Doc. Math., Volume 21 (2016), pp. 955-986 | DOI | MR | Zbl

[9] Julien Bichon Cohomological dimensions of universal cosovereign Hopfalgebras, Publ. Mat., Volume 62 (2018) no. 2, pp. 301-330 | DOI | MR | Zbl

[10] Julien Bichon On the monoidal invariance of the cohomological dimensionof Hopf algebras, C. R. Math. Acad. Sci. Paris, Volume 360 (2022), pp. 561-582 | DOI | MR | Zbl

[11] Julien Bichon; Sergey Neshveyev; Makoto Yamashita Graded twisting of categories and quantum groups by group actions, Ann. Inst. Fourier, Volume 66 (2016) no. 6, pp. 2299-2338 | DOI | Numdam | MR | Zbl

[12] Alexandru Chirvasitu Cosemisimple Hopf algebras are faithfully flat over Hopf subalgebras, Algebra Number Theory, Volume 8 (2014) no. 5, pp. 1179-1199 | DOI | MR | Zbl

[13] Stefaan Caenepeel; Gigel Militaru; Shenglin Zhu Frobenius and separable functors for generalized module categories and nonlinear equations, Lecture Notes in Mathematics, 1787, Springer, 2002, xiv+354 pages | DOI | MR | Zbl

[14] Stefaan Caenepeel; Gigel Militaru; Shenglin Zhu Crossed modules and Doi–Hopf modules, Isr. J. Math., Volume 100 (1997), pp. 221-247 | DOI | MR | Zbl

[15] Michel Dubois-Violette; Guy Launer The quantum group of a nondegenerate bilinear form, Phys. Lett. B, Volume 245 (1990) no. 2, pp. 175-177 | DOI | MR | Zbl

[16] Pavel Etingof; Shlomo Gelaki On finite-dimensional semisimple and cosemisimple Hopf algebras in positive characteristic, Int. Math. Res. Not., Volume 1998 (1998) no. 16, pp. 851-864 | DOI | MR | Zbl

[17] Murray Gerstenhaber; Samuel D. Schack Bialgebra cohomology, deformations, and quantum groups, Proc. Natl. Acad. Sci. USA, Volume 87 (1990) no. 1, pp. 478-481 | DOI | MR | Zbl

[18] Murray Gerstenhaber; Samuel D. Schack Algebras, bialgebras, quantum groups, and algebraic deformations, Deformation theory and quantum groups with applications to mathematical physics (Amherst, MA, 1990) (Contemporary Mathematics), Volume 134, American Mathematical Society, 1992, pp. 51-92 | DOI | MR | Zbl

[19] István Heckenberger; Hans-Jürgen Schneider Hopf algebras and root systems, Mathematical Surveys and Monographs, 247, American Mathematical Society, 2020, xix+582 pages | DOI | MR

[20] Peter John Hilton; Urs Stammbach A course in homological algebra, Graduate Texts in Mathematics, 4, Springer, 1971, ix+338 pages | DOI | MR | Zbl

[21] Susan Montgomery Hopf algebras and their actions on rings, CBMS Regional Conference Series in Mathematics, 82, American Mathematical Society, 1993, xiv+238 pages | DOI | MR | Zbl

[22] Brian Parshall; Jian Pan Wang On bialgebra cohomology, Bull. Soc. Math. Belg. Sér. A, Volume 42 (1990) no. 3, pp. 607-642 | MR | Zbl

[23] Peter Schauenburg Hopf modules and Yetter–Drinfelʼd modules, J. Algebra, Volume 169 (1994) no. 3, pp. 874-890 | DOI | MR | Zbl

[24] Steven Shnider; Shlomo Sternberg Quantum groups. From coalgebras to Drinfelʼd algebras. A guided tour, Graduate Texts in Mathematical Physics, II, International Press, 1993, xxii+496 pages | MR | Zbl

[25] Rachel Taillefer Injective Hopf bimodules, cohomologies of infinite dimensional Hopf algebras and graded-commutativity of the Yoneda product, J. Algebra, Volume 276 (2004) no. 1, pp. 259-279 | DOI | MR | Zbl

[26] Mitsuhiro Takeuchi Relative Hopf modules – equivalences and freeness criteria, J. Algebra, Volume 60 (1979) no. 2, pp. 452-471 | DOI | MR | Zbl

[27] Pierre Tarrago; Moritz Weber Unitary easy quantum groups: the free case and the group case, Int. Math. Res. Not., Volume 2017 (2017) no. 18, pp. 5710-5750 | DOI | MR | Zbl

[28] Alfons Van Daele; Shuzhou Wang Universal quantum groups, Int. J. Math., Volume 7 (1996) no. 2, pp. 255-263 | DOI | MR | Zbl

[29] Dragoş Ştefan The set of types of n-dimensional semisimple and cosemisimple Hopf algebras is finite, J. Algebra, Volume 193 (1997) no. 2, pp. 571-580 | DOI | MR | Zbl

Cité par Sources :

Commentaires - Politique