[Cohomologie de bigèbres et suites exactes]
Nous montrons comment les cohomologies de Gertstenhaber–Schack de deux algèbres de Hopf imbriquées dans une suite exacte courte sont reliées, quand le troisième facteur est cosemisimple de dimension finie. Nous en déduisons une preuve rapide du calcul de la cohomologie de bigèbre des algèbres de Hopf cosouveraines universelles dans le cas générique, établi récemment par Baraquin, Franz, Gerhold, Kula et Tobolski.
We show how the bialgebra cohomologies of two Hopf algebras involved in an exact sequence are related, when the third factor is finite-dimensional cosemisimple. As an application, we provide a short proof of the computation of the bialgebra cohomology of the universal cosovereign Hopf algebras in the generic (cosemisimple) case, done recently by Baraquin, Franz, Gerhold, Kula and Tobolski.
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.659
Keywords: Hopf algebras, bialgebra cohomology, Yetter–Drinfeld modules
Mots-clés : Algèbres de Hopf, cohomologie des bigèbres, modules de Yetter–Drinfeld
Julien Bichon 1
@article{CRMATH_2024__362_G11_1475_0, author = {Julien Bichon}, title = {Bialgebra cohomology and exact sequences}, journal = {Comptes Rendus. Math\'ematique}, pages = {1475--1483}, publisher = {Acad\'emie des sciences, Paris}, volume = {362}, year = {2024}, doi = {10.5802/crmath.659}, zbl = {07945489}, language = {en}, }
Julien Bichon. Bialgebra cohomology and exact sequences. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 1475-1483. doi : 10.5802/crmath.659. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.659/
[1] Extensions of Hopf algebras, St. Petersbg. Math. J., Volume 7 (1995) no. 1, pp. 22-61 | MR | Zbl
[2] Le groupe quantique compact libre , Commun. Math. Phys., Volume 190 (1997) no. 1, pp. 143-172 | DOI | MR | Zbl
[3] Free resolutions for free unitary quantum groups and universal cosovereign Hopf algebras, J. Lond. Math. Soc., Volume 109 (2024) no. 4, e12898, 50 pages | DOI | MR | Zbl
[4] The representation category of the quantum group of a non-degenerate bilinear form, Commun. Algebra, Volume 31 (2003) no. 10, pp. 4831-4851 | DOI | MR | Zbl
[5] Co-representation theory of universal co-sovereign Hopf algebras, J. Lond. Math. Soc., Volume 75 (2007) no. 1, pp. 83-98 | DOI | MR | Zbl
[6] Hochschild homology of Hopf algebras and free Yetter–Drinfeld resolutions of the counit, Compos. Math., Volume 149 (2013) no. 4, pp. 658-678 | DOI | MR | Zbl
[7] Hopf–Galois objects and cogroupoids, Rev. Unión Mat. Argent., Volume 55 (2014) no. 2, pp. 11-69 | MR | Zbl
[8] Gerstenhaber–Schack and Hochschild cohomologiesof Hopf algebras, Doc. Math., Volume 21 (2016), pp. 955-986 | DOI | MR | Zbl
[9] Cohomological dimensions of universal cosovereign Hopfalgebras, Publ. Mat., Volume 62 (2018) no. 2, pp. 301-330 | DOI | MR | Zbl
[10] On the monoidal invariance of the cohomological dimensionof Hopf algebras, C. R. Math. Acad. Sci. Paris, Volume 360 (2022), pp. 561-582 | DOI | MR | Zbl
[11] Graded twisting of categories and quantum groups by group actions, Ann. Inst. Fourier, Volume 66 (2016) no. 6, pp. 2299-2338 | DOI | Numdam | MR | Zbl
[12] Cosemisimple Hopf algebras are faithfully flat over Hopf subalgebras, Algebra Number Theory, Volume 8 (2014) no. 5, pp. 1179-1199 | DOI | MR | Zbl
[13] Frobenius and separable functors for generalized module categories and nonlinear equations, Lecture Notes in Mathematics, 1787, Springer, 2002, xiv+354 pages | DOI | MR | Zbl
[14] Crossed modules and Doi–Hopf modules, Isr. J. Math., Volume 100 (1997), pp. 221-247 | DOI | MR | Zbl
[15] The quantum group of a nondegenerate bilinear form, Phys. Lett. B, Volume 245 (1990) no. 2, pp. 175-177 | DOI | MR | Zbl
[16] On finite-dimensional semisimple and cosemisimple Hopf algebras in positive characteristic, Int. Math. Res. Not., Volume 1998 (1998) no. 16, pp. 851-864 | DOI | MR | Zbl
[17] Bialgebra cohomology, deformations, and quantum groups, Proc. Natl. Acad. Sci. USA, Volume 87 (1990) no. 1, pp. 478-481 | DOI | MR | Zbl
[18] Algebras, bialgebras, quantum groups, and algebraic deformations, Deformation theory and quantum groups with applications to mathematical physics (Amherst, MA, 1990) (Contemporary Mathematics), Volume 134, American Mathematical Society, 1992, pp. 51-92 | DOI | MR | Zbl
[19] Hopf algebras and root systems, Mathematical Surveys and Monographs, 247, American Mathematical Society, 2020, xix+582 pages | DOI | MR
[20] A course in homological algebra, Graduate Texts in Mathematics, 4, Springer, 1971, ix+338 pages | DOI | MR | Zbl
[21] Hopf algebras and their actions on rings, CBMS Regional Conference Series in Mathematics, 82, American Mathematical Society, 1993, xiv+238 pages | DOI | MR | Zbl
[22] On bialgebra cohomology, Bull. Soc. Math. Belg. Sér. A, Volume 42 (1990) no. 3, pp. 607-642 | MR | Zbl
[23] Hopf modules and Yetter–Drinfelʼd modules, J. Algebra, Volume 169 (1994) no. 3, pp. 874-890 | DOI | MR | Zbl
[24] Quantum groups. From coalgebras to Drinfelʼd algebras. A guided tour, Graduate Texts in Mathematical Physics, II, International Press, 1993, xxii+496 pages | MR | Zbl
[25] Injective Hopf bimodules, cohomologies of infinite dimensional Hopf algebras and graded-commutativity of the Yoneda product, J. Algebra, Volume 276 (2004) no. 1, pp. 259-279 | DOI | MR | Zbl
[26] Relative Hopf modules – equivalences and freeness criteria, J. Algebra, Volume 60 (1979) no. 2, pp. 452-471 | DOI | MR | Zbl
[27] Unitary easy quantum groups: the free case and the group case, Int. Math. Res. Not., Volume 2017 (2017) no. 18, pp. 5710-5750 | DOI | MR | Zbl
[28] Universal quantum groups, Int. J. Math., Volume 7 (1996) no. 2, pp. 255-263 | DOI | MR | Zbl
[29] The set of types of -dimensional semisimple and cosemisimple Hopf algebras is finite, J. Algebra, Volume 193 (1997) no. 2, pp. 571-580 | DOI | MR | Zbl
Cité par Sources :
Commentaires - Politique