Comptes Rendus
Article de recherche - Equations aux dérivées partielles, Physique mathématique
Uniqueness for the Camassa–Holm equation with non-homogeneous boundary conditions
[Unicité des solutions de l’équation de Camassa–Holm dans un domaine ouvert]
Comptes Rendus. Mathématique, Volume 363 (2025), pp. 139-168.

Nous montrons l’unicité des solutions de l’équation de Camassa–Holm sur un intervalle fini avec des conditions non-homogènes pour des solutions de moment d’inertie borné. Nous établissons aussi un résultat similaire pour les équations de Camassa–Holm d’ordre supérieur. Nos preuves s’appuient sur des méthodes d’énergies, avec des symétriseurs qui sont donnés comme solutions d’équations elliptiques auxiliaires bien choisies.

We establish the uniqueness of solutions of the Camassa–Holm equation on a finite interval with non-homogeneous boundary conditions in the case of bounded momentum. A similar result for the higher-order Camassa–Holm system is also given. Our proofs rely on energy-type methods, with some multipliers given as solutions of some auxiliary elliptic systems.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.664
Keywords: Camassa–Holm, non-homogeneous boundary conditions, transport-elliptic coupling
Mots-clés : Camassa–Holm, condition au bord non-homogène, couplage elliptique-hyperbolique

Florent Noisette 1

1 Institut de Mathématiques de Bordeaux, UMR 5251 CNRS et Université de Bordeaux, 351 cours de la Libération, 33405 Talence, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2025__363_G2_139_0,
     author = {Florent Noisette},
     title = {Uniqueness for the {Camassa{\textendash}Holm} equation with non-homogeneous boundary conditions},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {139--168},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {363},
     year = {2025},
     doi = {10.5802/crmath.664},
     language = {en},
}
TY  - JOUR
AU  - Florent Noisette
TI  - Uniqueness for the Camassa–Holm equation with non-homogeneous boundary conditions
JO  - Comptes Rendus. Mathématique
PY  - 2025
SP  - 139
EP  - 168
VL  - 363
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.664
LA  - en
ID  - CRMATH_2025__363_G2_139_0
ER  - 
%0 Journal Article
%A Florent Noisette
%T Uniqueness for the Camassa–Holm equation with non-homogeneous boundary conditions
%J Comptes Rendus. Mathématique
%D 2025
%P 139-168
%V 363
%I Académie des sciences, Paris
%R 10.5802/crmath.664
%G en
%F CRMATH_2025__363_G2_139_0
Florent Noisette. Uniqueness for the Camassa–Holm equation with non-homogeneous boundary conditions. Comptes Rendus. Mathématique, Volume 363 (2025), pp. 139-168. doi : 10.5802/crmath.664. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.664/

[1] Rikesh Bhatt; Alexander V. Mikhailov On the inconsistency of the Camassa–Holm equation with shallow water theory (2010) | arXiv

[2] Franck Boyer Trace theorems and spatial continuity properties for the solutions of the transport equation, Differ. Integral Equ., Volume 18 (2005) no. 8, pp. 891-934 | MR | Zbl

[3] Alberto Bressan; Geng Chen; Qingtian Zhang Uniqueness of Conservative Solutions to the Camassa–Holm Equation via Characteristics (2014) | arXiv

[4] Alberto Bressan; Adrian Constantin Global conservative solutions of the Camassa–Holm equation, Arch. Ration. Mech. Anal., Volume 183 (2007) no. 2, pp. 215-239 | DOI | MR | Zbl

[5] Roberto Camassa; Darryl D. Holm An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., Volume 71 (1993) no. 11, pp. 1661-1664 | DOI | MR | Zbl

[6] Giuseppe Maria Coclite; Helge Holden; Kenneth Hvistendahl Karlsen Global weak solutions to a generalized hyperelastic-rod wave equation, SIAM J. Math. Anal., Volume 37 (2005) no. 4, pp. 1044-1069 | DOI | MR | Zbl

[7] Giuseppe Maria Coclite; Helge Holden; Kenneth Hvistendahl Karlsen Well-posedness of higher-order Camassa–Holm equations, J. Differ. Equations, Volume 246 (2009) no. 3, pp. 929-963 | DOI | MR | Zbl

[8] Adrian Constantin; Joachim Escher Global existence and blow-up for a shallow water equation, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (4), Volume 26 (1998) no. 2, pp. 303-328 | Numdam | MR | Zbl

[9] Adrian Constantin; Joachim Escher Wave breaking for nonlinear nonlocal shallow water equations, Acta Math., Volume 181 (1998) no. 2, pp. 229-243 | DOI | MR | Zbl

[10] Adrian Constantin; Joachim Escher On the blow-up rate and the blow-up set of breaking waves for a shallow water equation, Math. Z., Volume 233 (2000) no. 1, pp. 75-91 | DOI | MR | Zbl

[11] Adrian Constantin; Vladimir S. Gerdjikov; Rossen I. Ivanov Inverse scattering transform for the Camassa–Holm equation, Inverse Probl., Volume 22 (2006) no. 6, pp. 2197-2207 | DOI | MR | Zbl

[12] Adrian Constantin; Rossen I. Ivanov The Camassa–Holm equation as a geodesic flow for the H1 right-invariant metric (2007) | arXiv

[13] Adrian Constantin; Boris Kolev Hk metrics on the diffeomorphism group of the circle, J. Nonlinear Math. Phys., Volume 10 (2003) no. 4, pp. 424-430 | DOI | MR | Zbl

[14] Adrian Constantin; David Lannes The hydrodynamical relevance of the Camassa–Holm and Degasperis–Procesi equations, Arch. Ration. Mech. Anal., Volume 192 (2009) no. 1, pp. 165-186 | DOI | MR | Zbl

[15] Joachim Escher; Zhaoyang Yin Initial boundary value problems of the Camassa–Holm equation, Commun. Partial Differ. Equations, Volume 33 (2008) no. 1-3, pp. 377-395 | DOI | MR | Zbl

[16] Joachim Escher; Zhaoyang Yin Initial boundary value problems for nonlinear dispersive wave equations, J. Funct. Anal., Volume 256 (2009) no. 2, pp. 479-508 | DOI | MR | Zbl

[17] Benno Fuchssteiner; Athanassios S. Fokas Symplectic structures, their Bäcklund transformations and hereditary symmetries, Phys. D: Nonlinear Phenom., Volume 4 (1981) no. 1, pp. 47-66 | DOI | MR | Zbl

[18] Lars Hörmander Inequalities Between Normal And Tangential Derivatives Of Harmonic Functions, Unpublished Manuscripts—from 1951 to 2007, Springer, 2018, pp. 37-41 | DOI

[19] David Lannes Modeling shallow water waves (2020) | arXiv

[20] Camillo de Lellis; Thomas Kappeler; Peter Topalov Low-regularity solutions of the periodic Camassa–Holm equation, Commun. Partial Differ. Equations, Volume 32 (2007) no. 1-3, pp. 87-126 | DOI | MR | Zbl

[21] Jonatan Lenells Traveling wave solutions of the Camassa–Holm equation, J. Differ. Equations, Volume 217 (2005) no. 2, pp. 393-430 | DOI | MR | Zbl

[22] Andrew J. Majda; Andrea L. Bertozzi Vorticity and incompressible flow, Cambridge Texts in Applied Mathematics, 27, Cambridge University Press, 2002, xii+545 pages | MR

[23] Florent Noisette; Franck Sueur Uniqueness of Yudovich’s solutions to the 2D incompressible Euler equation despite the presence of sources and sinks (2021) | arXiv

[24] Vincent Perrollaz Initial boundary value problem and asymptotic stabilization of the Camassa–Holm equation on an interval, J. Funct. Anal., Volume 259 (2010) no. 9, pp. 2333-2365 | DOI | MR | Zbl

[25] W. A. Weigant; Alexander A. Papin On the uniqueness of the solution of the flow problem with a given vortex, Math. Notes, Volume 96 (2014) no. 5-6, pp. 871-877 | DOI | MR | Zbl

[26] Viktor Iosifovich Yudovich A two-dimensional non-stationary problem on the flow of an ideal incompressible fluid through a given region, Mat. Sb., N. Ser., Volume 64(106) (1964), pp. 562-588 | MR

[27] Guoping Zhang; Zhijun Qiao; Fengshan Liu Cusp and smooth solitons of the Camassa–Holm equation under an inhomogeneous boundary condition, Pac. J. Appl. Math., Volume 1 (2008) no. 1, pp. 105-121 | MR

Cité par Sources :

Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: