[Unicité des solutions de l’équation de Camassa–Holm dans un domaine ouvert]
Nous montrons l’unicité des solutions de l’équation de Camassa–Holm sur un intervalle fini avec des conditions non-homogènes pour des solutions de moment d’inertie borné. Nous établissons aussi un résultat similaire pour les équations de Camassa–Holm d’ordre supérieur. Nos preuves s’appuient sur des méthodes d’énergies, avec des symétriseurs qui sont donnés comme solutions d’équations elliptiques auxiliaires bien choisies.
We establish the uniqueness of solutions of the Camassa–Holm equation on a finite interval with non-homogeneous boundary conditions in the case of bounded momentum. A similar result for the higher-order Camassa–Holm system is also given. Our proofs rely on energy-type methods, with some multipliers given as solutions of some auxiliary elliptic systems.
Révisé le :
Accepté le :
Publié le :
Mots-clés : Camassa–Holm, condition au bord non-homogène, couplage elliptique-hyperbolique
Florent Noisette 1

@article{CRMATH_2025__363_G2_139_0, author = {Florent Noisette}, title = {Uniqueness for the {Camassa{\textendash}Holm} equation with non-homogeneous boundary conditions}, journal = {Comptes Rendus. Math\'ematique}, pages = {139--168}, publisher = {Acad\'emie des sciences, Paris}, volume = {363}, year = {2025}, doi = {10.5802/crmath.664}, language = {en}, }
Florent Noisette. Uniqueness for the Camassa–Holm equation with non-homogeneous boundary conditions. Comptes Rendus. Mathématique, Volume 363 (2025), pp. 139-168. doi : 10.5802/crmath.664. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.664/
[1] On the inconsistency of the Camassa–Holm equation with shallow water theory (2010) | arXiv
[2] Trace theorems and spatial continuity properties for the solutions of the transport equation, Differ. Integral Equ., Volume 18 (2005) no. 8, pp. 891-934 | MR | Zbl
[3] Uniqueness of Conservative Solutions to the Camassa–Holm Equation via Characteristics (2014) | arXiv
[4] Global conservative solutions of the Camassa–Holm equation, Arch. Ration. Mech. Anal., Volume 183 (2007) no. 2, pp. 215-239 | DOI | MR | Zbl
[5] An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., Volume 71 (1993) no. 11, pp. 1661-1664 | DOI | MR | Zbl
[6] Global weak solutions to a generalized hyperelastic-rod wave equation, SIAM J. Math. Anal., Volume 37 (2005) no. 4, pp. 1044-1069 | DOI | MR | Zbl
[7] Well-posedness of higher-order Camassa–Holm equations, J. Differ. Equations, Volume 246 (2009) no. 3, pp. 929-963 | DOI | MR | Zbl
[8] Global existence and blow-up for a shallow water equation, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (4), Volume 26 (1998) no. 2, pp. 303-328 | Numdam | MR | Zbl
[9] Wave breaking for nonlinear nonlocal shallow water equations, Acta Math., Volume 181 (1998) no. 2, pp. 229-243 | DOI | MR | Zbl
[10] On the blow-up rate and the blow-up set of breaking waves for a shallow water equation, Math. Z., Volume 233 (2000) no. 1, pp. 75-91 | DOI | MR | Zbl
[11] Inverse scattering transform for the Camassa–Holm equation, Inverse Probl., Volume 22 (2006) no. 6, pp. 2197-2207 | DOI | MR | Zbl
[12] The Camassa–Holm equation as a geodesic flow for the
[13]
[14] The hydrodynamical relevance of the Camassa–Holm and Degasperis–Procesi equations, Arch. Ration. Mech. Anal., Volume 192 (2009) no. 1, pp. 165-186 | DOI | MR | Zbl
[15] Initial boundary value problems of the Camassa–Holm equation, Commun. Partial Differ. Equations, Volume 33 (2008) no. 1-3, pp. 377-395 | DOI | MR | Zbl
[16] Initial boundary value problems for nonlinear dispersive wave equations, J. Funct. Anal., Volume 256 (2009) no. 2, pp. 479-508 | DOI | MR | Zbl
[17] Symplectic structures, their Bäcklund transformations and hereditary symmetries, Phys. D: Nonlinear Phenom., Volume 4 (1981) no. 1, pp. 47-66 | DOI | MR | Zbl
[18] Inequalities Between Normal And Tangential Derivatives Of Harmonic Functions, Unpublished Manuscripts—from 1951 to 2007, Springer, 2018, pp. 37-41 | DOI
[19] Modeling shallow water waves (2020) | arXiv
[20] Low-regularity solutions of the periodic Camassa–Holm equation, Commun. Partial Differ. Equations, Volume 32 (2007) no. 1-3, pp. 87-126 | DOI | MR | Zbl
[21] Traveling wave solutions of the Camassa–Holm equation, J. Differ. Equations, Volume 217 (2005) no. 2, pp. 393-430 | DOI | MR | Zbl
[22] Vorticity and incompressible flow, Cambridge Texts in Applied Mathematics, 27, Cambridge University Press, 2002, xii+545 pages | MR
[23] Uniqueness of Yudovich’s solutions to the 2D incompressible Euler equation despite the presence of sources and sinks (2021) | arXiv
[24] Initial boundary value problem and asymptotic stabilization of the Camassa–Holm equation on an interval, J. Funct. Anal., Volume 259 (2010) no. 9, pp. 2333-2365 | DOI | MR | Zbl
[25] On the uniqueness of the solution of the flow problem with a given vortex, Math. Notes, Volume 96 (2014) no. 5-6, pp. 871-877 | DOI | MR | Zbl
[26] A two-dimensional non-stationary problem on the flow of an ideal incompressible fluid through a given region, Mat. Sb., N. Ser., Volume 64(106) (1964), pp. 562-588 | MR
[27] Cusp and smooth solitons of the Camassa–Holm equation under an inhomogeneous boundary condition, Pac. J. Appl. Math., Volume 1 (2008) no. 1, pp. 105-121 | MR
Cité par Sources :
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier