[Positivité des quadratures de convolution générées par des séquences non convexes]
Le caractère défini positif des formes quadratiques réelles de type convolution joue un rôle important dans l’analyse de stabilité des schémas en temps pour les modèles non locaux. Plus précisément, lorsque ces formes quadratiques sont générées par des séquences convexes, leur positivité peut être vérifiée en appliquant un résultat classique dû à Zygmund. L’objectif principal de ce travail est double. Nous améliorons d’abord le résultat de Zygmund et étendons sa validité aux séquences presque convexes. Deuxièmement, nous établissons une inégalité plus générale applicable aux séquences non convexes. Nos résultats sont ensuite appliqués pour démontrer le caractère défini positif des approximations couramment utilisées pour les opérateurs intégraux et différentiels fractionnaires, y compris le quadrature de convolution générée par la formule BDF2. Pour conclure, nous montrons que la stabilité de certains schémas fractionnaires simples peut être obtenue de manière simple.
The positive definiteness of real quadratic forms of convolution type plays an important role in the stability analysis of time-stepping schemes for nonlocal models. Specifically, when these quadratic forms are generated by convex sequences, their positivity can be verified by applying a classical result due to Zygmund. The primary focus of this work is twofold. We first improve Zygmund’s result and extend its validity to sequences that are almost convex. Secondly, we establish a more general inequality applicable to nonconvex sequences. Our results are then applied to demonstrate the positive definiteness of commonly used approximations for fractional integral and differential operators, including the convolution quadrature generated by the BDF2 formula. To conclude, we show that the stability of some simple time-fractional schemes can be obtained in a straightforward way.
Révisé le :
Accepté le :
Publié le :
Keywords: Convolution quadrature, positive definiteness, nonconvex sequence, minimal convex sequence
Mots-clés : Quadrature de convolution, définie positive, suite non convexe, suite convexe minimale
Samir Karaa 1
@article{CRMATH_2024__362_G12_1627_0, author = {Samir Karaa}, title = {Positivity of convolution quadratures generated by nonconvex sequences}, journal = {Comptes Rendus. Math\'ematique}, pages = {1627--1634}, publisher = {Acad\'emie des sciences, Paris}, volume = {362}, year = {2024}, doi = {10.5802/crmath.669}, language = {en}, }
Samir Karaa. Positivity of convolution quadratures generated by nonconvex sequences. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 1627-1634. doi : 10.5802/crmath.669. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.669/
[1] The time-fractional Cahn–Hilliard equation: analysis and approximation, IMA J. Numer. Anal., Volume 42 (2022) no. 2, pp. 1831-1865 | DOI | MR | Zbl
[2] Positivity of discrete time-fractional operators with applications to phase-field equations, SIAM J. Numer. Anal., Volume 59 (2021) no. 4, pp. 2040-2053 | DOI | MR | Zbl
[3] Positive definiteness of real quadratic forms resulting from the variable-step L1-type approximations of convolution operators, Sci. China, Math., Volume 67 (2024) no. 2, pp. 237-252 | DOI | MR | Zbl
[4] Convolution quadrature and discretized operational calculus. I, Numer. Math., Volume 52 (1988) no. 2, pp. 129-145 | DOI | MR | Zbl
[5] Finite difference/spectral approximations for the time-fractional diffusion equation, J. Comput. Phys., Volume 225 (2007) no. 2, pp. 1533-1552 | DOI | MR | Zbl
[6] A difference scheme for a nonlinear partial integrodifferential equation, SIAM J. Numer. Anal., Volume 27 (1990) no. 1, pp. 20-31 | DOI | MR | Zbl
[7] A second-order accurate numerical method for a fractional wave equation, Numer. Math., Volume 105 (2007) no. 3, pp. 481-510 | DOI | MR | Zbl
[8] Numerical solution of an evolution equation with a positive-type memory term, J. Aust. Math. Soc., Ser. B, Volume 35 (1993) no. 1, pp. 23-70 | DOI | MR | Zbl
[9] Fractional differential equations. An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Mathematics in Science and Engineering, 198, Academic Press Inc., 1999, xxiv+340 pages | MR | Zbl
[10] A decreasing upper bound of the energy for time-fractional phase-field equations, Commun. Comput. Phys., Volume 33 (2023) no. 4, pp. 962-991 | DOI | MR | Zbl
[11] Trigonometric series. Volumes I and II combined, Cambridge Mathematical Library, Cambridge University Press, 2002, xiii+364 pages (with a foreword by Robert A. Fefferman) | MR | Zbl
Cité par Sources :
Commentaires - Politique