Comptes Rendus
Probabilités, Statistiques
On weak law of large numbers for sums of negatively superadditive dependent random variables
[Sur la loi faible des grands nombres pour des sommes pondérées de variables aléatoires négativement superadditivement-dépendantes]
Comptes Rendus. Mathématique, Volume 358 (2020) no. 1, pp. 13-21.

Dans cet article, nous étendons la loi faible des grands nombres de Kolmogorov–Feller à des sommes pondérées maximales de variables aléatoires négativement superadditivement-dépendantes (NSD). En outre, nous construisons une étude de simulation du comportement asymptotique au sens de la convergence en probabilité pour les sommes pondérées de variables aléatoires NSD.

In this paper, we extend Kolmogorov–Feller weak law of large numbers for maximal weighted sums of negatively superadditive dependent (NSD) random variables. In addition, we make a simulation study for the asymptotic behavior in the sense of convergence in probability for weighted sums of NSD random variables.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.7
Classification : 60F05, 60F15, 65C10

Habib Naderi 1 ; Przemysław Matuła 2 ; Mahdi Salehi 3 ; Mohammad Amini 4

1 Department of Mathematics, University of Sistan and Baluchestan, Zahedan, Iran
2 Institute of Mathematics, Marie Curie-Skłodowska University, pl. M.C.-Skłodowskiej 1, 20-031 Lublin, Poland
3 Department of Mathematics and Statistics, University of Neyshabur, Neyshabur, Iran
4 Department of Statistics, Ordered data, reliability and dependency Center of Excellence, Ferdowsi University of Mashhad, P.O. Box 91775-1159, Mashhad, Iran
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2020__358_1_13_0,
     author = {Habib Naderi and Przemys{\l}aw Matu{\l}a and Mahdi Salehi and Mohammad Amini},
     title = {On weak law of large numbers for sums of negatively superadditive dependent random variables},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {13--21},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {358},
     number = {1},
     year = {2020},
     doi = {10.5802/crmath.7},
     language = {en},
}
TY  - JOUR
AU  - Habib Naderi
AU  - Przemysław Matuła
AU  - Mahdi Salehi
AU  - Mohammad Amini
TI  - On weak law of large numbers for sums of negatively superadditive dependent random variables
JO  - Comptes Rendus. Mathématique
PY  - 2020
SP  - 13
EP  - 21
VL  - 358
IS  - 1
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.7
LA  - en
ID  - CRMATH_2020__358_1_13_0
ER  - 
%0 Journal Article
%A Habib Naderi
%A Przemysław Matuła
%A Mahdi Salehi
%A Mohammad Amini
%T On weak law of large numbers for sums of negatively superadditive dependent random variables
%J Comptes Rendus. Mathématique
%D 2020
%P 13-21
%V 358
%N 1
%I Académie des sciences, Paris
%R 10.5802/crmath.7
%G en
%F CRMATH_2020__358_1_13_0
Habib Naderi; Przemysław Matuła; Mahdi Salehi; Mohammad Amini. On weak law of large numbers for sums of negatively superadditive dependent random variables. Comptes Rendus. Mathématique, Volume 358 (2020) no. 1, pp. 13-21. doi : 10.5802/crmath.7. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.7/

[1] André Adler; Przemysław Matuła On exact strong laws of large numbers under general dependence conditions, Probab. Math. Stat., Volume 38 (2018) no. 1, pp. 103-121 | MR | Zbl

[2] Khursheed Alam; K. M. Lal Saxena Positive dependence in multivariate distributions, Commun. Stat., Theory Methods, Volume 10 (1981), pp. 1183-1196 | DOI | MR | Zbl

[3] Nicholas H. Bingham; Charles M. Goldie; Jozef L. Teugels Regular variation, Encyclopedia of Mathematics and Its Applications, 27, Cambridge University Press, 1987 | MR | Zbl

[4] Henry W. Block; Thomas H. Savits; Moshe Shaked Some concepts of negative dependence, Ann. Probab., Volume 10 (1982), pp. 765-772 | DOI | MR | Zbl

[5] Alexander Bulinski; Alexey Shashkin Limit theorems for associated random fields and related systems, Advanced Series on Statistical Science & Applied Probability, 10, World Scientific, 2007 | DOI | MR | Zbl

[6] Tasos C. Christofides; Eutichia Vaggelatou A connection between supermodular ordering and positive/negative association, J. Multivariate Anal., Volume 88 (2004) no. 1, pp. 138-151 | DOI | MR | Zbl

[7] István Fazekas; Przemysław Matuła; Maciej Ziemba A note on the weighted strong law of large numbers under general conditions, Publ. Math., Volume 90 (2017) no. 3-4, pp. 373-386 | MR | Zbl

[8] Taizhong Hu Negatively superadditive dependence of random variables with applications, Chin. J. Appl. Probab. Stat., Volume 16 (2000) no. 2, pp. 133-144 | MR | Zbl

[9] Ryszard Jajte On the strong law of large numbers, Ann. Probab., Volume 31 (2003) no. 1, pp. 409-412 | MR | Zbl

[10] Kumar Joag-Dev; Frank Proschan Negative association of random variables with applications, Ann. Stat., Volume 11 (1983), pp. 286-295 | DOI | MR | Zbl

[11] Colin L. Mallows; Donald Richter Inequalities of Chebyshev type involving conditional expectations, Ann. Math. Stat., Volume 40 (1969), pp. 1922-1932 | DOI | MR | Zbl

[12] H. Naderi; Przemysław Matuła; M. Amini; H. Ahmadzade A version of the Kolmogorov–Feller weak law of large numbers for maximal weighted sums of random variables, Commun. Stat., Theory Methods, Volume 48 (2018) no. 21, pp. 5414-5418 | DOI

[13] Habib Naderi; Przemysław Matuła; Mohammad Amini; Abolghasem Bozorgnia On stochastic dominance and the strong law of large numbers for dependent random variables, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM, Volume 110 (2016) no. 2, pp. 771-782 | DOI | MR | Zbl

[14] Valentin V. Petrov Limit theorems of probability theory. Sequences of independent random variables, Oxford Studies in Probability, 4, Clarendon Press, 1995 | MR | Zbl

[15] Aiting Shen On the strong law of large numbers for weighted sums of negatively superadditive dependent random variables, J. Korean Math. Soc., Volume 53 (2016) no. 1, pp. 45-55 | DOI | MR | Zbl

[16] Demei Yuan; Xuemei Hu A conditional version of the extended Kolmogorov-Feller weak law of large numbers, Stat. Probab. Lett., Volume 97 (2015), pp. 99-107 | DOI | MR | Zbl

  • Yuan Ji; Aiting Shen; Mei Yao The weak law of large numbers for weighted sums of m -asymptotic negatively associated random variables, Communications in Statistics - Theory and Methods (2024), p. 1 | DOI:10.1080/03610926.2024.2409365
  • Habib Naderi; Mehdi Jafari; Przemysław Matuła; Morteza Mohammadi On the Jajte weak law of large numbers for exchangeable random variables, Communications in Statistics - Theory and Methods, Volume 53 (2024) no. 9, p. 3226 | DOI:10.1080/03610926.2022.2150827
  • Shunping Zheng; Fei Zhang; Chunhua Wang; Xuejun Wang Weak convergence for weighted sums of a class of random variables with related statistical applications, Statistics, Volume 57 (2023) no. 4, p. 867 | DOI:10.1080/02331888.2023.2227984
  • Habib Naderi; Przemysław Matuła; Mohammad Amini Weak Law of Large Numbers Without Any Restriction on the Dependence Structure of Random Variables, Bulletin of the Iranian Mathematical Society, Volume 48 (2022) no. 4, p. 1959 | DOI:10.1007/s41980-021-00631-6
  • Habib Naderi; Fakhreddine Boukhari; Przemysław Matuła A note on the weak law of large numbers for weighted negatively superadditive dependent random variables, Communications in Statistics - Theory and Methods, Volume 51 (2022) no. 21, p. 7465 | DOI:10.1080/03610926.2021.1873377
  • Fakhreddine Boukhari On a Weak Law of Large Numbers with Regularly Varying Normalizing Sequences, Journal of Theoretical Probability, Volume 35 (2022) no. 3, p. 2068 | DOI:10.1007/s10959-021-01120-6
  • Fakhreddine Boukhari A remark on the Kolmogorov–Feller weak law of large numbers, Proceedings - Mathematical Sciences, Volume 132 (2022) no. 2 | DOI:10.1007/s12044-022-00705-3
  • Nguyen Van Huan; Nguyen Van Quang Some strong limit theorems for weighted sums of measurable operators, Infinite Dimensional Analysis, Quantum Probability and Related Topics, Volume 24 (2021) no. 04 | DOI:10.1142/s0219025721500223

Cité par 8 documents. Sources : Crossref

Commentaires - Politique