Comptes Rendus
Ordinary Differential Equations, Dynamical Systems
First integrals of the Maxwell–Bloch system
Comptes Rendus. Mathématique, Volume 358 (2020) no. 1, pp. 3-11.

We investigate the analytic, rational and C 1 first integrals of the Maxwell–Bloch system

E ˙=-κE+gP,P ˙=-γ P+gE, ˙=-γ (- 0 )-4gPE,

where κ,γ ,g,γ , 0 are real parameters. In addition, we prove this system is rationally non-integrable in the sense of Bogoyavlenskij for almost all parameter values.

Nous étudions les premières intégrales analytiques, rationnelles et C 1 du système de Maxwell–Bloch

E ˙=-κE+gP,P ˙=-γ P+gE, ˙=-γ (- 0 )-4gPE,

κ,γ ,g,γ , 0 sont des paramètres réels. En outre, nous prouvons que ce système est non intégrable rationnel dans le sens de Bogoyavlenskij pour presque toutes les valeurs de paramètres.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/crmath.6

Kaiyin Huang 1, 2; Shaoyun Shi 1, 3; Wenlei Li 1

1 School of Mathematics, Jilin University, Changchun 130012, P. R. China
2 School of Mathematics, Sichuan University, Chengdu 610000, P. R. China
3 State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130012, P. R. China
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRMATH_2020__358_1_3_0,
     author = {Kaiyin Huang and Shaoyun Shi and Wenlei Li},
     title = {First integrals of the {Maxwell{\textendash}Bloch} system},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {3--11},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {358},
     number = {1},
     year = {2020},
     doi = {10.5802/crmath.6},
     language = {en},
}
TY  - JOUR
AU  - Kaiyin Huang
AU  - Shaoyun Shi
AU  - Wenlei Li
TI  - First integrals of the Maxwell–Bloch system
JO  - Comptes Rendus. Mathématique
PY  - 2020
SP  - 3
EP  - 11
VL  - 358
IS  - 1
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.6
LA  - en
ID  - CRMATH_2020__358_1_3_0
ER  - 
%0 Journal Article
%A Kaiyin Huang
%A Shaoyun Shi
%A Wenlei Li
%T First integrals of the Maxwell–Bloch system
%J Comptes Rendus. Mathématique
%D 2020
%P 3-11
%V 358
%N 1
%I Académie des sciences, Paris
%R 10.5802/crmath.6
%G en
%F CRMATH_2020__358_1_3_0
Kaiyin Huang; Shaoyun Shi; Wenlei Li. First integrals of the Maxwell–Bloch system. Comptes Rendus. Mathématique, Volume 358 (2020) no. 1, pp. 3-11. doi : 10.5802/crmath.6. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.6/

[1] Fortunato T. Arecchi Chaos and generalized multistability in quantum optics, Phys. Scr., Volume T9 (1985), pp. 85-92 | DOI

[2] Michaël Ayoul; Nguyen Tien Zung Galoisian obstructions to non-Hamiltonian integrability, C. R. Math. Acad. Sci. Paris, Volume 348 (2010) no. 23-24, pp. 1323-1326 | DOI | MR | Zbl

[3] Alberto Baider; Richard C. Churchill; David L. Rod; Michael F. Singer On the infinitesimal geometry of integrable systems, Mechanics day (Waterloo, ON, 1992) (Fields Institute Communications), Volume 7, American Mathematical Society, 1992, pp. 5-56 | Zbl

[4] Oleg I. Bogoyavlenskij Extended integrability and bi-Hamiltonian systems, Commun. Math. Phys., Volume 196 (1998) no. 1, pp. 19-51 | DOI | MR | Zbl

[5] Murilo R. Cândido; Jaume Llibre; Douglas D. Novaes Persistence of periodic solutions for higher order perturbed differential systems via Lyapunov-Schmidt reduction, Nonlinearity, Volume 30 (2017) no. 9, pp. 3560-3586 | DOI | MR | Zbl

[6] Richard C. Churchill; David L. Rod; Michael F. Singer Group-theoretic obstructions to integrability, Ergodic Theory Dyn. Syst., Volume 15 (1995) no. 1, pp. 15-48 | DOI | MR | Zbl

[7] Avadis S. Hacinliyan; İlknur Kuşbeyzi; Orhan O. Aybar Approximate solutions of Maxwell-Bloch equations and possible Lotka Volterra type behavior, Nonlinear Dyn., Volume 62 (2010) no. 1-2, pp. 17-26 | DOI | MR | Zbl

[8] Ya. I. Khanin Dynamics of Lasers, Soviet Radio, 1975

[9] Yuri A. Kuznetsov Elements of applied bifurcation theory, Springer, 2013 | Zbl

[10] Weigu Li; Jaume Llibre; Xiang Zhang Local first integrals of differential systems and diffeomorphisms, Z. Angew. Math. Phys., Volume 54 (2003) no. 2, pp. 235-255 | MR | Zbl

[11] Wenlei Li; Shaoyun Shi Galoisian obstruction to the integrability of general dynamical systems, Dyn. Syst., Volume 252 (2012) no. 10, pp. 5518-5534 | MR | Zbl

[12] Wenlei Li; Shaoyun Shi Corrigendum to “Galoisian obstruction to the integrability of general dynamical systems”, Dyn. Syst., Volume 262 (2017) no. 3, pp. 1253-1256 | Zbl

[13] Lingling Liu; O. Ozgur Aybar; Valery G. Romanovski; Weinian Zhang OIdentifying weak foci and centers in the Maxwell–Bloch system, J. Math. Anal. Appl., Volume 430 (2015) no. 1, pp. 549-571 | Zbl

[14] Jaume Llibre; Clàudia Valls Formal and analytic integrability of the Lorenz system, J. Phys. A, Math. Gen., Volume 38 (2005) no. 12, pp. 2681-2686 | DOI | MR | Zbl

[15] Jaume Llibre; Clàudia Valls Global analytic integrability of the Rabinovich system, J. Geom. Phys., Volume 58 (2008) no. 12, pp. 1762-1771 | DOI | MR | Zbl

[16] Jaume Llibre; Clàudia Valls Analytic first integrals of the FitzHugh–Nagumo systems, Z. Angew. Math. Phys., Volume 60 (2009) no. 2, pp. 237-245 | DOI | MR | Zbl

[17] Jaume Llibre; Clàudia Valls On the C 1 non-integrability of differential systems via periodic orbits, Eur. J. Appl. Math., Volume 22 (2011) no. 4, pp. 381-391 | MR | Zbl

[18] Cristian Lăzureanu On the Hamilton-Poisson realizations of the integrable deformations of the Maxwell–Bloch equations, C. R. Math. Acad. Sci. Paris, Volume 355 (2017) no. 5, pp. 596-600 | DOI | MR | Zbl

[19] Juan J. Morales-Ruiz Differential Galois theory and non-integrability of Hamiltonian systems, Progress in Mathematics, 179, Birkhäuser, 1999 | MR | Zbl

[20] Juan J. Morales-Ruiz; Jean Pierre Ramis Galoisian obstructions to integrability of Hamiltonian systems. I. II., Methods Appl. Anal., Volume 8 (2001) no. 1, p. 33-95, 97–111 | MR | Zbl

[21] Henri Poincaré Sur l’intégration algébrique des équations différentielles du premier ordre et du premier degré, Palermo Rend., Volume 5 (1897), pp. 193-239 | DOI | Zbl

Cited by Sources:

Comments - Policy