We investigate the analytic, rational and first integrals of the Maxwell–Bloch system
where are real parameters. In addition, we prove this system is rationally non-integrable in the sense of Bogoyavlenskij for almost all parameter values.
Nous étudions les premières intégrales analytiques, rationnelles et du système de Maxwell–Bloch
où sont des paramètres réels. En outre, nous prouvons que ce système est non intégrable rationnel dans le sens de Bogoyavlenskij pour presque toutes les valeurs de paramètres.
Revised:
Accepted:
Published online:
Kaiyin Huang 1, 2; Shaoyun Shi 1, 3; Wenlei Li 1
@article{CRMATH_2020__358_1_3_0, author = {Kaiyin Huang and Shaoyun Shi and Wenlei Li}, title = {First integrals of the {Maxwell{\textendash}Bloch} system}, journal = {Comptes Rendus. Math\'ematique}, pages = {3--11}, publisher = {Acad\'emie des sciences, Paris}, volume = {358}, number = {1}, year = {2020}, doi = {10.5802/crmath.6}, language = {en}, }
Kaiyin Huang; Shaoyun Shi; Wenlei Li. First integrals of the Maxwell–Bloch system. Comptes Rendus. Mathématique, Volume 358 (2020) no. 1, pp. 3-11. doi : 10.5802/crmath.6. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.6/
[1] Chaos and generalized multistability in quantum optics, Phys. Scr., Volume T9 (1985), pp. 85-92 | DOI
[2] Galoisian obstructions to non-Hamiltonian integrability, C. R. Math. Acad. Sci. Paris, Volume 348 (2010) no. 23-24, pp. 1323-1326 | DOI | MR | Zbl
[3] On the infinitesimal geometry of integrable systems, Mechanics day (Waterloo, ON, 1992) (Fields Institute Communications), Volume 7, American Mathematical Society, 1992, pp. 5-56 | Zbl
[4] Extended integrability and bi-Hamiltonian systems, Commun. Math. Phys., Volume 196 (1998) no. 1, pp. 19-51 | DOI | MR | Zbl
[5] Persistence of periodic solutions for higher order perturbed differential systems via Lyapunov-Schmidt reduction, Nonlinearity, Volume 30 (2017) no. 9, pp. 3560-3586 | DOI | MR | Zbl
[6] Group-theoretic obstructions to integrability, Ergodic Theory Dyn. Syst., Volume 15 (1995) no. 1, pp. 15-48 | DOI | MR | Zbl
[7] Approximate solutions of Maxwell-Bloch equations and possible Lotka Volterra type behavior, Nonlinear Dyn., Volume 62 (2010) no. 1-2, pp. 17-26 | DOI | MR | Zbl
[8] Dynamics of Lasers, Soviet Radio, 1975
[9] Elements of applied bifurcation theory, Springer, 2013 | Zbl
[10] Local first integrals of differential systems and diffeomorphisms, Z. Angew. Math. Phys., Volume 54 (2003) no. 2, pp. 235-255 | MR | Zbl
[11] Galoisian obstruction to the integrability of general dynamical systems, Dyn. Syst., Volume 252 (2012) no. 10, pp. 5518-5534 | MR | Zbl
[12] Corrigendum to “Galoisian obstruction to the integrability of general dynamical systems”, Dyn. Syst., Volume 262 (2017) no. 3, pp. 1253-1256 | Zbl
[13] OIdentifying weak foci and centers in the Maxwell–Bloch system, J. Math. Anal. Appl., Volume 430 (2015) no. 1, pp. 549-571 | Zbl
[14] Formal and analytic integrability of the Lorenz system, J. Phys. A, Math. Gen., Volume 38 (2005) no. 12, pp. 2681-2686 | DOI | MR | Zbl
[15] Global analytic integrability of the Rabinovich system, J. Geom. Phys., Volume 58 (2008) no. 12, pp. 1762-1771 | DOI | MR | Zbl
[16] Analytic first integrals of the FitzHugh–Nagumo systems, Z. Angew. Math. Phys., Volume 60 (2009) no. 2, pp. 237-245 | DOI | MR | Zbl
[17] On the non-integrability of differential systems via periodic orbits, Eur. J. Appl. Math., Volume 22 (2011) no. 4, pp. 381-391 | MR | Zbl
[18] On the Hamilton-Poisson realizations of the integrable deformations of the Maxwell–Bloch equations, C. R. Math. Acad. Sci. Paris, Volume 355 (2017) no. 5, pp. 596-600 | DOI | MR | Zbl
[19] Differential Galois theory and non-integrability of Hamiltonian systems, Progress in Mathematics, 179, Birkhäuser, 1999 | MR | Zbl
[20] Galoisian obstructions to integrability of Hamiltonian systems. I. II., Methods Appl. Anal., Volume 8 (2001) no. 1, p. 33-95, 97–111 | MR | Zbl
[21] Sur l’intégration algébrique des équations différentielles du premier ordre et du premier degré, Palermo Rend., Volume 5 (1897), pp. 193-239 | DOI | Zbl
Cited by Sources:
Comments - Policy