Comptes Rendus
Article de recherche - Géométrie et Topologie, Théorie des groupes
Burau representation of B4 and quantization of the rational projective plane
[Représentation de Burau de B4 et quantification du plan projectif rationnel]
Comptes Rendus. Mathématique, Volume 363 (2025), pp. 89-107.

The braid group B4 naturally acts on the rational projective plane P2(Q), this action corresponds to the classical integral reduced Burau representation of B4. The first result of this paper is a classification of the orbits of this action. The Burau representation then defines an action of B4 on P2(Z(q)), where q is a formal parameter and Z(q) is the field of rational functions in q with integer coefficients. We study orbits of the B4-action on P2(Z(q)), and show existence of embeddings of the q-deformed projective line P1(Z(q)) that precisely correspond to the notion of q-rationals due to Morier-Genoud and Ovsienko.

Le groupe de tresses B4 agit naturellement sur le plan projectif rationnel P2(Q). Cette action est donnée par la classique représentation de Burau entière de B4. Le premier résultat de cet article consiste en une classification des orbites de cette action. La représentation de Burau permet ensuite de définir une action de B4 sur P2(Z(q)), où q est un paramètre formel et Z(q) le corps des fractions rationnelles en q, à coefficients entiers. On étudie les orbites de cette action de B4 sur P2(Z(q)), et on montre l’existence d’un plongement de la q-déformation de la droite projective rationnelle P1(Z(q)) qui coïncide précisément avec la notion de q-rationnels due à Morier-Genoud et Ovsienko.

Reçu le :
Accepté le :
Accepté après révision le :
Publié le :
DOI : 10.5802/crmath.702
Classification : 20F36, 20C12, 05A30
Keywords: Quantization, Burau representation, q-rational numbers, braid group, rational projective plane
Mots-clés : Quantification, représentation de Burau, q-rationnels, groupe de tresses, plan projectif rationnel

Perrine Jouteur 1

1 Laboratoire de Mathématiques de Reims, UMR 9008 CNRS et Université de Reims Champagne-Ardenne, U.F.R. Sciences Exactes et Naturelles, Moulin de la Housse, BP 1039, 51687 Reims cedex 2, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2025__363_G1_89_0,
     author = {Perrine Jouteur},
     title = {Burau representation of $B_4$ and quantization of the rational projective plane},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {89--107},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {363},
     year = {2025},
     doi = {10.5802/crmath.702},
     language = {en},
}
TY  - JOUR
AU  - Perrine Jouteur
TI  - Burau representation of $B_4$ and quantization of the rational projective plane
JO  - Comptes Rendus. Mathématique
PY  - 2025
SP  - 89
EP  - 107
VL  - 363
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.702
LA  - en
ID  - CRMATH_2025__363_G1_89_0
ER  - 
%0 Journal Article
%A Perrine Jouteur
%T Burau representation of $B_4$ and quantization of the rational projective plane
%J Comptes Rendus. Mathématique
%D 2025
%P 89-107
%V 363
%I Académie des sciences, Paris
%R 10.5802/crmath.702
%G en
%F CRMATH_2025__363_G1_89_0
Perrine Jouteur. Burau representation of $B_4$ and quantization of the rational projective plane. Comptes Rendus. Mathématique, Volume 363 (2025), pp. 89-107. doi : 10.5802/crmath.702. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.702/

[1] Asilata Bapat; Louis Becker; Anthony M. Licata q-deformed rational numbers and the 2-Calabi–Yau category of type A2, Forum Math. Sigma, Volume 11 (2023), e47, 41 pages | DOI | MR | Zbl

[2] Joan S. Birman Braids, links, and mapping class groups, Annals of Mathematics Studies, 82, Princeton University Press, 1974, ix+228 pages | MR

[3] Tara Brendle; Dan Margalit; Andrew Putman Generators for the hyperelliptic Torelli group and the kernel of the Burau representation at t=-1, Invent. Math., Volume 200 (2015) no. 1, pp. 263-310 | DOI | MR | Zbl

[4] Werner Burau Über Zopfgruppen und gleichsinnig verdrillte Verkettungen, Abh. Math. Semin. Univ. Hamb., Volume 11 (1935), pp. 179-186 | DOI | MR | Zbl

[5] Ethan Dlugie The Burau representation and shapes of polyhedra, Algebr. Geom. Topol., Volume 24 (2024) no. 5, pp. 2787-2805 | DOI | MR | Zbl

[6] Louis Funar; Toshitake Kohno On Burau’s representations at roots of unity, Geom. Dedicata, Volume 169 (2009), pp. 145-163 | DOI | MR | Zbl

[7] Oleg Karpenkov On Hermite’s problem, Jacobi–Perron type algorithms, and Dirichlet groups, Acta Arith., Volume 203 (2022) no. 1, pp. 27-48 | DOI | MR | Zbl

[8] Christian Kassel; Vladimir Turaev Braid groups, Graduate Texts in Mathematics, 247, Springer, 2008, xii+340 pages | DOI | MR

[9] Peter Lynch; Michael Mackey Parity and partition of the rational numbers, Coll. Math. J., Volume 55 (2024) no. 5, pp. 387-399 | DOI | MR | Zbl

[10] Sophie Morier-Genoud; Valentin Ovsienko On q-Deformed Real Numbers, Exp. Math., Volume 31 (2019), pp. 652-660 | DOI | MR | Zbl

[11] Sophie Morier-Genoud; Valentin Ovsienko q-deformed rationals and q-continued fractions, Forum Math. Sigma, Volume 8 (2020), e13, 55 pages | DOI | MR | Zbl

[12] Sophie Morier-Genoud; Valentin Ovsienko; Alexander P. Veselov Burau representation of braid groups and q-rationals, Int. Math. Res. Not., Volume 2024 (2024) no. 10, pp. 8618-8627 | DOI | MR | Zbl

[13] Ezgi Kantarcı Oğuz; Mohan Ravichandran Rank Polynomials of Fence Posets are Unimodal, Discrete Math., Volume 346 (2023) no. 2, 113218, 20 pages | DOI | MR | Zbl

[14] Valentin Ovsienko Towards quantized complex numbers: q-deformed Gaussian integers and the Picard group, Open Commun. Nonlinear Math. Phys., Volume 1 (2021), pp. 73-93 | DOI | Zbl

[15] Hanka Řada; Štěpán Starosta; Vítězslav Kala Periodicity of general multidimensional continued fractions using repetend matrix form, Expo. Math., Volume 42 (2024) no. 3, 125571, 37 pages | DOI | MR | Zbl

[16] Adam S. Sikora Tangle equations, the Jones conjecture, slopes of surfaces in tangle complements, and q-deformed rationals, Can. J. Math., Volume 76 (2024) no. 2, pp. 707-727 | DOI | MR | Zbl

[17] Neville Francis Smythe The Burau representation of the braid group is pairwise free, Arch. Math., Volume 32 (1979), pp. 309-317 | DOI | Zbl

[18] Craig C. Squier The Burau representation is unitary, Proc. Am. Math. Soc., Volume 90 (1984) no. 2, pp. 199-202 | DOI | MR | Zbl

Cité par Sources :

Commentaires - Politique