Comptes Rendus
Article de recherche - Géométrie et Topologie, Théorie des représentations
Betti Tate’s thesis and the trace of perverse schobers
[La thèse de Tate dans le contexte de Betti et la trace des schobers pervers]
Comptes Rendus. Mathématique, Volume 363 (2025), pp. 169-181.

Nous proposons une conjecture sur la trace catégorique de la 2-catégorie des schobers pervers (qui modélisent conjecturalement la 2-catégorie de Fukaya-Fueter d’une variété symplectique holomorphe). En prouvant une version de la thèse de Tate dans le contexte de Betti, et en la combinant avec notre précédente équivalence de symétrie miroir 3D et le théorème de Ben-Zvi-Nadler-Preygel sur les traces spectrales, nous établissons notre conjecture dans le cas intéressant le plus simple.

We propose a conjecture on the categorical trace of the 2-category of perverse schobers (expected to model the Fukaya–Fueter 2-category of a holomorphic symplectic space). By proving a Betti geometric version of Tate’s thesis, and combining it with our previous 3d mirror symmetry equivalence and the Ben-Zvi–Nadler–Preygel result on spectral traces, we are able to establish our conjecture in the simplest interesting case.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.703

Benjamin Gammage 1 ; Justin Hilburn 2

1 Department of Mathematics, Harvard University, Cambridge, MA, USA
2 Perimeter Institute, Waterloo, Ontario, Canada
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2025__363_G2_169_0,
     author = {Benjamin Gammage and Justin Hilburn},
     title = {Betti {Tate{\textquoteright}s} thesis and the trace of perverse schobers},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {169--181},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {363},
     year = {2025},
     doi = {10.5802/crmath.703},
     language = {en},
}
TY  - JOUR
AU  - Benjamin Gammage
AU  - Justin Hilburn
TI  - Betti Tate’s thesis and the trace of perverse schobers
JO  - Comptes Rendus. Mathématique
PY  - 2025
SP  - 169
EP  - 181
VL  - 363
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.703
LA  - en
ID  - CRMATH_2025__363_G2_169_0
ER  - 
%0 Journal Article
%A Benjamin Gammage
%A Justin Hilburn
%T Betti Tate’s thesis and the trace of perverse schobers
%J Comptes Rendus. Mathématique
%D 2025
%P 169-181
%V 363
%I Académie des sciences, Paris
%R 10.5802/crmath.703
%G en
%F CRMATH_2025__363_G2_169_0
Benjamin Gammage; Justin Hilburn. Betti Tate’s thesis and the trace of perverse schobers. Comptes Rendus. Mathématique, Volume 363 (2025), pp. 169-181. doi : 10.5802/crmath.703. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.703/

[1] Alberto Abbondandolo; Matthias Schwarz On the Floer homology of cotangent bundles, Commun. Pure Appl. Math., Volume 59 (2006) no. 2, pp. 254-316 | DOI | MR | Zbl

[2] Mohammed Abouzaid On the wrapped Fukaya category and based loops, J. Symplectic Geom., Volume 10 (2012) no. 1, pp. 27-79 | DOI | MR | Zbl

[3] Dmitry Arinkin; Roman Bezrukavnikov Perverse coherent sheaves, Mosc. Math. J., Volume 10 (2010) no. 1, pp. 3-29 | DOI | MR | Zbl

[4] Andrew Ballin; Wenjun Niu 3d Mirror Symmetry and the βγ VOA (2022) | arXiv

[5] Alexander Beilinson; Vladimir Drinfeld Quantization of Hitchin’s integrable system and Hecke eigensheaves (Online at https://math.uchicago.edu/~drinfeld/langlands/QuantizationHitchin.pdf)

[6] David Ben-Zvi; John Francis; David Nadler Integral transforms and Drinfeld centers in derived algebraic geometry, J. Am. Math. Soc., Volume 23 (2010) no. 4, pp. 909-966 | DOI | MR | Zbl

[7] David Ben-Zvi; David Nadler Loop spaces and connections, J. Topol., Volume 5 (2012) no. 2, pp. 377-430 | DOI | MR | Zbl

[8] David Ben-Zvi; David Nadler Betti geometric Langlands, Algebraic geometry: Salt Lake City 2015 (Proceedings of Symposia in Pure Mathematics), Volume 97, American Mathematical Society, 2018, pp. 3-41 | Zbl

[9] David Ben-Zvi; David Nadler; Anatoly Preygel A spectral incarnation of affine character sheaves, Compos. Math., Volume 153 (2017) no. 9, pp. 1908-1944 | DOI | MR | Zbl

[10] David Ben-Zvi; Yiannis Sakellaridis; Akshay Venkatesh Relative Langlands duality (2024) | arXiv

[11] Alexis Bouthier; David Kazhdan; Yakov Varshavsky Perverse sheaves on infinite-dimensional stacks, and affine Springer theory, Adv. Math., Volume 408 (2022), 108572, 132 pages | DOI | MR | Zbl

[12] Sabin Cautis; Harold Williams Cluster theory of the coherent Satake category, J. Am. Math. Soc., Volume 32 (2019) no. 3, pp. 709-778 | DOI | MR | Zbl

[13] Justin Michael Curry Dualities between cellular sheaves and cosheaves, J. Pure Appl. Algebra, Volume 222 (2018) no. 4, pp. 966-993 | DOI | MR | Zbl

[14] Tobias Dyckerhoff Compact generators in categories of matrix factorizations, Duke Math. J., Volume 159 (2011) no. 2, pp. 223-274 | DOI | MR | Zbl

[15] David Favero; Jesse Huang Homotopy path algebras (2022) | arXiv

[16] Dennis Gaitsgory; Nick Rozenblyum A study in derived algebraic geometry. Vol. I. Correspondences and duality, Mathematical Surveys and Monographs, 221, American Mathematical Society, 2017, xl+533 pages | DOI | MR

[17] Benjamin Gammage; Justin Hilburn; Aaron Mazel-Gee Perverse schobers and 3d mirror symmetry (2022) | arXiv

[18] Tom Gannon Classification of nondegenerate G-categories (with an appendix written jointly with Germán Stefanich) (2022) | arXiv

[19] Claudius Heyer; Lucas Mann 6-Functor Formalisms and Smooth Representations (2024) | arXiv

[20] Justin Hilburn; Sam Raskin Tate’s thesis in the de Rham setting (2021) | arXiv

[21] John D. S. Jones Cyclic homology and equivariant homology, Invent. Math., Volume 87 (1987) no. 2, pp. 403-423 | DOI | MR | Zbl

[22] Jacob Lurie Higher topos theory, Annals of Mathematics Studies, 170, Princeton University Press, 2009, xviii+925 pages | DOI | MR

[23] Jacob Lurie Higher algebra (2017) https://www.math.ias.edu/~lurie/papers/ha.pdf

[24] Sam Raskin D-modules on infinite-dimensional varieties https://gauss.math.yale.edu/~sr2532/dmod.pdf

[25] Kendric Schefers An equivalence between vanishing cycles and microlocalization (2022) | arXiv

[26] Christian Schnell Holonomic D-modules on abelian varieties, Publ. Math., Inst. Hautes Étud. Sci., Volume 121 (2015), pp. 1-55 | DOI | Numdam | MR | Zbl

[27] Bertrand Toën The homotopy theory of dg-categories and derived Morita theory, Invent. Math., Volume 167 (2007) no. 3, pp. 615-667 | DOI | MR | Zbl

[28] Joa Weber Three approaches towards Floer homology of cotangent bundles, J. Symplectic Geom., Volume 3 (2005) no. 4, pp. 671-701 | DOI | MR | Zbl

Cité par Sources :

Commentaires - Politique