[La thèse de Tate dans le contexte de Betti et la trace des schobers pervers]
Nous proposons une conjecture sur la trace catégorique de la 2-catégorie des schobers pervers (qui modélisent conjecturalement la 2-catégorie de Fukaya-Fueter d’une variété symplectique holomorphe). En prouvant une version de la thèse de Tate dans le contexte de Betti, et en la combinant avec notre précédente équivalence de symétrie miroir 3D et le théorème de Ben-Zvi-Nadler-Preygel sur les traces spectrales, nous établissons notre conjecture dans le cas intéressant le plus simple.
We propose a conjecture on the categorical trace of the 2-category of perverse schobers (expected to model the Fukaya–Fueter 2-category of a holomorphic symplectic space). By proving a Betti geometric version of Tate’s thesis, and combining it with our previous 3d mirror symmetry equivalence and the Ben-Zvi–Nadler–Preygel result on spectral traces, we are able to establish our conjecture in the simplest interesting case.
Révisé le :
Accepté le :
Publié le :
Benjamin Gammage 1 ; Justin Hilburn 2

@article{CRMATH_2025__363_G2_169_0, author = {Benjamin Gammage and Justin Hilburn}, title = {Betti {Tate{\textquoteright}s} thesis and the trace of perverse schobers}, journal = {Comptes Rendus. Math\'ematique}, pages = {169--181}, publisher = {Acad\'emie des sciences, Paris}, volume = {363}, year = {2025}, doi = {10.5802/crmath.703}, language = {en}, }
Benjamin Gammage; Justin Hilburn. Betti Tate’s thesis and the trace of perverse schobers. Comptes Rendus. Mathématique, Volume 363 (2025), pp. 169-181. doi : 10.5802/crmath.703. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.703/
[1] On the Floer homology of cotangent bundles, Commun. Pure Appl. Math., Volume 59 (2006) no. 2, pp. 254-316 | DOI | MR | Zbl
[2] On the wrapped Fukaya category and based loops, J. Symplectic Geom., Volume 10 (2012) no. 1, pp. 27-79 | DOI | MR | Zbl
[3] Perverse coherent sheaves, Mosc. Math. J., Volume 10 (2010) no. 1, pp. 3-29 | DOI | MR | Zbl
[4] 3d Mirror Symmetry and the
[5] Quantization of Hitchin’s integrable system and Hecke eigensheaves (Online at https://math.uchicago.edu/~drinfeld/langlands/QuantizationHitchin.pdf)
[6] Integral transforms and Drinfeld centers in derived algebraic geometry, J. Am. Math. Soc., Volume 23 (2010) no. 4, pp. 909-966 | DOI | MR | Zbl
[7] Loop spaces and connections, J. Topol., Volume 5 (2012) no. 2, pp. 377-430 | DOI | MR | Zbl
[8] Betti geometric Langlands, Algebraic geometry: Salt Lake City 2015 (Proceedings of Symposia in Pure Mathematics), Volume 97, American Mathematical Society, 2018, pp. 3-41 | Zbl
[9] A spectral incarnation of affine character sheaves, Compos. Math., Volume 153 (2017) no. 9, pp. 1908-1944 | DOI | MR | Zbl
[10] Relative Langlands duality (2024) | arXiv
[11] Perverse sheaves on infinite-dimensional stacks, and affine Springer theory, Adv. Math., Volume 408 (2022), 108572, 132 pages | DOI | MR | Zbl
[12] Cluster theory of the coherent Satake category, J. Am. Math. Soc., Volume 32 (2019) no. 3, pp. 709-778 | DOI | MR | Zbl
[13] Dualities between cellular sheaves and cosheaves, J. Pure Appl. Algebra, Volume 222 (2018) no. 4, pp. 966-993 | DOI | MR | Zbl
[14] Compact generators in categories of matrix factorizations, Duke Math. J., Volume 159 (2011) no. 2, pp. 223-274 | DOI | MR | Zbl
[15] Homotopy path algebras (2022) | arXiv
[16] A study in derived algebraic geometry. Vol. I. Correspondences and duality, Mathematical Surveys and Monographs, 221, American Mathematical Society, 2017, xl+533 pages | DOI | MR
[17] Perverse schobers and 3d mirror symmetry (2022) | arXiv
[18] Classification of nondegenerate G-categories (with an appendix written jointly with Germán Stefanich) (2022) | arXiv
[19] 6-Functor Formalisms and Smooth Representations (2024) | arXiv
[20] Tate’s thesis in the de Rham setting (2021) | arXiv
[21] Cyclic homology and equivariant homology, Invent. Math., Volume 87 (1987) no. 2, pp. 403-423 | DOI | MR | Zbl
[22] Higher topos theory, Annals of Mathematics Studies, 170, Princeton University Press, 2009, xviii+925 pages | DOI | MR
[23] Higher algebra (2017) https://www.math.ias.edu/~lurie/papers/ha.pdf
[24] D-modules on infinite-dimensional varieties https://gauss.math.yale.edu/~sr2532/dmod.pdf
[25] An equivalence between vanishing cycles and microlocalization (2022) | arXiv
[26] Holonomic D-modules on abelian varieties, Publ. Math., Inst. Hautes Étud. Sci., Volume 121 (2015), pp. 1-55 | DOI | Numdam | MR | Zbl
[27] The homotopy theory of
[28] Three approaches towards Floer homology of cotangent bundles, J. Symplectic Geom., Volume 3 (2005) no. 4, pp. 671-701 | DOI | MR | Zbl
Cité par Sources :
Commentaires - Politique