The Cox construction presents a toric variety as a quotient of affine space by a torus. The category of coherent sheaves on the corresponding stack thus has an evident description as invariants in a quotient of the category of modules over a polynomial ring. Here we give the mirror to this description, and in particular, a clean new proof of mirror symmetry for smooth toric stacks.
Révisé le :
Accepté le :
Publié le :
Vivek Shende 1, 2
@article{CRMATH_2022__360_G7_751_0, author = {Vivek Shende}, title = {Toric mirror symmetry revisited}, journal = {Comptes Rendus. Math\'ematique}, pages = {751--759}, publisher = {Acad\'emie des sciences, Paris}, volume = {360}, year = {2022}, doi = {10.5802/crmath.304}, language = {en}, }
Vivek Shende. Toric mirror symmetry revisited. Comptes Rendus. Mathématique, Volume 360 (2022), pp. 751-759. doi : 10.5802/crmath.304. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.304/
[1] Homogeneous coordinate rings and mirror symmetry for toric varieties, Geom. Topol., Volume 10 (2006), pp. 1097-1156 | DOI | MR | Zbl
[2] Morse homology, tropical geometry, and homological mirror symmetry for toric varieties, Sel. Math., New Ser., Volume 15 (2009) no. 2, pp. 189-270 | DOI | MR | Zbl
[3] Derived categories of toric varieties, Convex and Algebraic Geometry, Oberwolfach Conference Reports, Volume 3, European Mathematical Society, 2006, pp. 284-286
[4] The homogeneous coordinate ring of a toric variety, J. Algebr. Geom., Volume 4 (1995) no. 1, pp. 17-50 | MR | Zbl
[5] A categorification of Morelli’s theorem, Invent. Math., Volume 186 (2011) no. 1, pp. 79-114 | DOI | MR | Zbl
[6] The coherent-constructible correspondence for toric Deligne-Mumford stacks, Int. Math. Res. Not., Volume 2014 (2014) no. 4, pp. 914-954 | DOI | MR | Zbl
[7] Sheaves of categories and the notion of 1-affineness, Stacks and categories in geometry, topology, and algebra (Contemporary Mathematics), Volume 643, American Mathematical Society, 2015, pp. 127-225 (CATS4 conference on higher categorical structures and their interactions with algebraic geometry, algebraic topology and algebra, CIRM, Luminy, France, July 2–7, 2012) | DOI | MR | Zbl
[8] A study in derived algebraic geometry: Volume I: Correspondences and duality, Mathematical Surveys and Monographs, 221, American Mathematical Society, 2017 | Zbl
[9] Mirror symmetry for Berglund–Hübsch Milnor fibers (2020) (https://arxiv.org/abs/2010.15570)
[10] Local mirror symmetry via SYZ (2021) (https://arxiv.org/abs/2105.12863)
[11] Homological mirror symmetry at large volume (2021) (https://arxiv.org/abs/2104.11129)
[12] Mirror symmetry for very affine hypersurfaces (2021) (https://arxiv.org/abs/1707.02959)
[13] Sectorial descent for wrapped Fukaya categories (2019) (https://arxiv.org/abs/1809.03427)
[14] Covariantly functorial wrapped Floer theory on Liouville sectors, Publ. Math., Inst. Hautes Étud. Sci., Volume 131 (2020) no. 1, pp. 73-200 | DOI | MR | Zbl
[15] Microlocal Morse theory of wrapped Fukaya categories (2020) (https://arxiv.org/abs/1809.08807)
[16] Monodromy of monomially admissible Fukaya–Seidel categories mirror to toric varieties, Adv. Math., Volume 350 (2019), pp. 662-746 | DOI | MR | Zbl
[17] Functoriality and homological mirror symmetry for toric varieties (2020) (https://arxiv.org/abs/2010.08817v1)
[18] Mirror symmetry (2000) (https://arxiv.org/abs/hep-th/0002222)
[19] Variation of GIT and Variation of Lagrangian Skeletons II: Quasi-Symmetric Case (2020) (https://arxiv.org/abs/2011.06114)
[20] Sheaves on Manifolds, Grundlehren der Mathematischen Wissenschaften, 292, Springer, 1990 | DOI | Zbl
[21] The nonequivariant coherent-constructible correspondence for toric stacks, Duke Math. J., Volume 169 (2020) no. 11, pp. 2125-2197 | DOI | MR | Zbl
[22] Higher topos theory, Annals of Mathematics Studies, 170, Princeton University Press, 2009 | DOI | MR | Zbl
[23] Higher algebra, 2017 (Available at https://www.math.ias.edu/~lurie/papers/HA.pdf)
[24] Mirror symmetry for the Landau–Ginzburg A-model , , Duke Math. J., Volume 168 (2019) no. 1, pp. 1-84 | MR | Zbl
[25] Sheaf quantization in Weinstein symplectic manifolds (2021) (https://arxiv.org/abs/2007.10154)
[26] Homological mirror symmetry for the quartic surface, Memoirs of the American Mathematical Society, American Mathematical Society, 2015 | Zbl
[27] Remarks on the nonequivariant coherent-constructible correspondence for toric varieties (2010) (https://arxiv.org/abs/1006.5756)
[28] Coherent-constructible correspondences and log-perfectoid mirror symmetry for the torus, 2017 (https://math.berkeley.edu/~vaintrob/toric.pdf)
[29] Sheaf quantization of Legendrian isotopy (2018) (https://arxiv.org/abs/1804.08928)
[30] Twisted polytope sheaves and coherent-constructible correspondence for toric varieties, Sel. Math. New Ser., Volume 25 (2019) no. 1, 1 | MR | Zbl
[31] Lagrangian skeleta of hypersurfaces in , Sel. Math. New Ser., Volume 26 (2020) no. 2, 26 | MR | Zbl
[32] Variation of GIT and variation of Lagrangian skeletons I: Flip and Flop (2020) (https://arxiv.org/abs/2011.03719)
Cité par Sources :
Commentaires - Politique