Comptes Rendus
Article de recherche - Équations aux dérivées partielles
Anomalous dissipation for the d-dimensional Navier–Stokes equations
[Dissipation anomale pour les équations de Navier–Stokes à d dimensions]
Comptes Rendus. Mathématique, Volume 363 (2025), pp. 345-351.

The purpose of this paper is to study the vanishing viscosity limit for the d-dimensional Navier–Stokes equations in the whole space:

{tuε+uεuεεΔuε+pε=0,divuε=0.

We aim to present a simple rigorous example of initial data which generates the corresponding solutions of the Navier–Stokes equations for which the dissipation rate of the kinetic energy is bounded away from zero.

L’objectif de cet article est d’étudier la limite de disparition de la viscosité pour les équations de Navier–Stokes à d dimensions dans l’espace entier :

{tuε+uεuεεΔuε+pε=0,divuε=0.

Nous visons à présenter des exemples simples et rigoureux de données initiales qui génèrent les solutions correspondantes des équations de Navier–Stokes pour lesquelles le taux de dissipation de l’énergie cinétique est borné loin de zéro.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.709
Classification : 35Q35, 76D09
Keywords: Navier–Stokes equations, inviscid limit
Mots-clés : Équations de Navier–Stokes, limite inviscide

Jinlu Li 1 ; Yanghai Yu 2 ; Weipeng Zhu 3

1 School of Mathematics and Computer Sciences, Gannan Normal University, Ganzhou 341000, China
2 School of Mathematics and Statistics, Anhui Normal University, Wuhu 241002, China
3 School of Mathematics, Foshan University, Foshan, Guangdong 528000, China
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2025__363_G4_345_0,
     author = {Jinlu Li and Yanghai Yu and Weipeng  Zhu},
     title = {Anomalous dissipation for the d-dimensional {Navier{\textendash}Stokes} equations},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {345--351},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {363},
     year = {2025},
     doi = {10.5802/crmath.709},
     language = {en},
}
TY  - JOUR
AU  - Jinlu Li
AU  - Yanghai Yu
AU  - Weipeng  Zhu
TI  - Anomalous dissipation for the d-dimensional Navier–Stokes equations
JO  - Comptes Rendus. Mathématique
PY  - 2025
SP  - 345
EP  - 351
VL  - 363
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.709
LA  - en
ID  - CRMATH_2025__363_G4_345_0
ER  - 
%0 Journal Article
%A Jinlu Li
%A Yanghai Yu
%A Weipeng  Zhu
%T Anomalous dissipation for the d-dimensional Navier–Stokes equations
%J Comptes Rendus. Mathématique
%D 2025
%P 345-351
%V 363
%I Académie des sciences, Paris
%R 10.5802/crmath.709
%G en
%F CRMATH_2025__363_G4_345_0
Jinlu Li; Yanghai Yu; Weipeng  Zhu. Anomalous dissipation for the d-dimensional Navier–Stokes equations. Comptes Rendus. Mathématique, Volume 363 (2025), pp. 345-351. doi : 10.5802/crmath.709. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.709/

[1] Hajer Bahouri; Jean-Yves Chemin; Raphaël Danchin Fourier analysis and nonlinear partial differential equations, Grundlehren der Mathematischen Wissenschaften, 343, Springer, 2011, xvi+523 pages | DOI | MR

[2] Elia Bruè; Maria Colombo; Gianluca Crippa; Camillo De Lellis; Massimo Sorella Onsager critical solutions of the forced Navier–Stokes equations (2022) | arXiv

[3] Elia Bruè; Camillo De Lellis Anomalous dissipation for the forced 3D Navier–Stokes equations, Commun. Math. Phys., Volume 400 (2023) no. 3, pp. 1507-1533 | DOI | MR | Zbl

[4] Tristan Buckmaster; Vlad Vicol Convex integration and phenomenologies in turbulence, EMS Surv. Math. Sci., Volume 6 (2019) no. 1-2, pp. 173-263 | DOI | MR | Zbl

[5] Alexey Cheskidov Dissipation anomaly and anomalous dissipation in incompressible fluid flows (2024) | arXiv

[6] Alexey Cheskidov; Xiaoyutao Luo Anomalous dissipation, anomalous work, and energy balance for the Navier–Stokes equations, SIAM J. Math. Anal., Volume 53 (2021) no. 4, pp. 3856-3887 | DOI | MR | Zbl

[7] Peter Constantin; Andrei Tarfulea; Vlad Vicol Absence of anomalous dissipation of energy in forced two dimensional fluid equations, Arch. Ration. Mech. Anal., Volume 212 (2014) no. 3, pp. 875-903 | DOI | MR | Zbl

[8] Theodore D. Drivas; Tarek M. Elgindi; Gautam Iyer; In-Jee Jeong Anomalous dissipation in passive scalar transport, Arch. Ration. Mech. Anal., Volume 243 (2022) no. 3, pp. 1151-1180 | DOI | MR | Zbl

[9] Gregory L. Eyink Review of the Onsager “Ideal Turbulence” Theory (2018) | arXiv

[10] Uriel Frisch Turbulence. The legacy of A. N. Kolmogorov, Cambridge University Press, 1995, xiv+296 pages | DOI | MR

[11] Zihua Guo; Jinlu Li; Zhaoyang Yin Local well-posedness of the incompressible Euler equations in B,11 and the inviscid limit of the Navier–Stokes equations, J. Funct. Anal., Volume 276 (2019) no. 9, pp. 2821-2830 | DOI | MR | Zbl

[12] In-Jee Jeong; Tsuyoshi Yoneda Vortex stretching and enhanced dissipation for the incompressible 3D Navier–Stokes equations, Math. Ann., Volume 380 (2021) no. 3-4, pp. 2041-2072 | DOI | MR | Zbl

[13] In-Jee Jeong; Tsuyoshi Yoneda Quasi-streamwise vortices and enhanced dissipation for incompressible 3D Navier–Stokes equations, Proc. Am. Math. Soc., Volume 150 (2022) no. 3, pp. 1279-1286 | DOI | MR | Zbl

[14] Carl Johan Peter Johansson; Massimo Sorella Nontrivial absolutely continuous part of anomalous dissipation measures in time (2023) | arXiv

[15] Yukio Kaneda; Takashi Ishihara; Mitsuo Yokokawa; Ken’ichi Itakura; Atsuya Uno Energy dissipation rate and energy spectrum in high resolution direct numerical simulations of turbulence in a periodic box, Phys. Fluids, Volume 15 (2003) no. 2, p. L21-L24 | DOI | Zbl

[16] Andreĭ Nikolaevich Kolmogorov Dissipation of energy in the locally isotropic turbulence, C. R. (Dokl.) Acad. Sci. URSS, n. Ser., Volume 32 (1941), pp. 16-18 | MR | Zbl

[17] Andreĭ Nikolaevich Kolmogorov On degeneration of isotropic turbulence in an incompressible viscous liquid, C. R. (Dokl.) Acad. Sci. URSS, n. Ser., Volume 31 (1941), pp. 538-540 | MR

[18] Andreĭ Nikolaevich Kolmogorov The local structure of turbulence in incompressible viscous fluid for very large Reynold’s numbers, C. R. (Dokl.) Acad. Sci. URSS, n. Ser., Volume 30 (1941) no. 4, pp. 301-305 | MR

[19] Bruce R. Pearson; Per-Åge Krogstad; Willem van de Water Measurements of the turbulent energy dissipation rate, Phys. Fluids, Volume 14 (2002) no. 3, pp. 1288-1290 | DOI

[20] Katepalli R. Sreenivasan On the scaling of the turbulence energy dissipation rate, Phys. Fluids, Volume 27 (1984) no. 5, pp. 1048-1051 | DOI

[21] Katepalli R. Sreenivasan An update on the energy dissipation rate in isotropic turbulence, Phys. Fluids, Volume 10 (1998) no. 2, pp. 528-529 | DOI | MR | Zbl

[22] John Christos Vassilicos Dissipation in turbulent flows, Annual review of fluid mechanics. Vol. 47 (Annual Review of Fluid Mechanics), Annual Reviews, 2015 no. 47, pp. 95-114 | DOI | MR

Cité par Sources :

Commentaires - Politique