[Dissipation anomale pour les équations de Navier–Stokes à d dimensions]
The purpose of this paper is to study the vanishing viscosity limit for the d-dimensional Navier–Stokes equations in the whole space:
|
We aim to present a simple rigorous example of initial data which generates the corresponding solutions of the Navier–Stokes equations for which the dissipation rate of the kinetic energy is bounded away from zero.
L’objectif de cet article est d’étudier la limite de disparition de la viscosité pour les équations de Navier–Stokes à d dimensions dans l’espace entier :
|
Nous visons à présenter des exemples simples et rigoureux de données initiales qui génèrent les solutions correspondantes des équations de Navier–Stokes pour lesquelles le taux de dissipation de l’énergie cinétique est borné loin de zéro.
Révisé le :
Accepté le :
Publié le :
Keywords: Navier–Stokes equations, inviscid limit
Mots-clés : Équations de Navier–Stokes, limite inviscide
Jinlu Li 1 ; Yanghai Yu 2 ; Weipeng Zhu 3

@article{CRMATH_2025__363_G4_345_0, author = {Jinlu Li and Yanghai Yu and Weipeng Zhu}, title = {Anomalous dissipation for the d-dimensional {Navier{\textendash}Stokes} equations}, journal = {Comptes Rendus. Math\'ematique}, pages = {345--351}, publisher = {Acad\'emie des sciences, Paris}, volume = {363}, year = {2025}, doi = {10.5802/crmath.709}, language = {en}, }
TY - JOUR AU - Jinlu Li AU - Yanghai Yu AU - Weipeng Zhu TI - Anomalous dissipation for the d-dimensional Navier–Stokes equations JO - Comptes Rendus. Mathématique PY - 2025 SP - 345 EP - 351 VL - 363 PB - Académie des sciences, Paris DO - 10.5802/crmath.709 LA - en ID - CRMATH_2025__363_G4_345_0 ER -
Jinlu Li; Yanghai Yu; Weipeng Zhu. Anomalous dissipation for the d-dimensional Navier–Stokes equations. Comptes Rendus. Mathématique, Volume 363 (2025), pp. 345-351. doi : 10.5802/crmath.709. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.709/
[1] Fourier analysis and nonlinear partial differential equations, Grundlehren der Mathematischen Wissenschaften, 343, Springer, 2011, xvi+523 pages | DOI | MR
[2] Onsager critical solutions of the forced Navier–Stokes equations (2022) | arXiv
[3] Anomalous dissipation for the forced 3D Navier–Stokes equations, Commun. Math. Phys., Volume 400 (2023) no. 3, pp. 1507-1533 | DOI | MR | Zbl
[4] Convex integration and phenomenologies in turbulence, EMS Surv. Math. Sci., Volume 6 (2019) no. 1-2, pp. 173-263 | DOI | MR | Zbl
[5] Dissipation anomaly and anomalous dissipation in incompressible fluid flows (2024) | arXiv
[6] Anomalous dissipation, anomalous work, and energy balance for the Navier–Stokes equations, SIAM J. Math. Anal., Volume 53 (2021) no. 4, pp. 3856-3887 | DOI | MR | Zbl
[7] Absence of anomalous dissipation of energy in forced two dimensional fluid equations, Arch. Ration. Mech. Anal., Volume 212 (2014) no. 3, pp. 875-903 | DOI | MR | Zbl
[8] Anomalous dissipation in passive scalar transport, Arch. Ration. Mech. Anal., Volume 243 (2022) no. 3, pp. 1151-1180 | DOI | MR | Zbl
[9] Review of the Onsager “Ideal Turbulence” Theory (2018) | arXiv
[10] Turbulence. The legacy of A. N. Kolmogorov, Cambridge University Press, 1995, xiv+296 pages | DOI | MR
[11] Local well-posedness of the incompressible Euler equations in
[12] Vortex stretching and enhanced dissipation for the incompressible 3D Navier–Stokes equations, Math. Ann., Volume 380 (2021) no. 3-4, pp. 2041-2072 | DOI | MR | Zbl
[13] Quasi-streamwise vortices and enhanced dissipation for incompressible 3D Navier–Stokes equations, Proc. Am. Math. Soc., Volume 150 (2022) no. 3, pp. 1279-1286 | DOI | MR | Zbl
[14] Nontrivial absolutely continuous part of anomalous dissipation measures in time (2023) | arXiv
[15] Energy dissipation rate and energy spectrum in high resolution direct numerical simulations of turbulence in a periodic box, Phys. Fluids, Volume 15 (2003) no. 2, p. L21-L24 | DOI | Zbl
[16] Dissipation of energy in the locally isotropic turbulence, C. R. (Dokl.) Acad. Sci. URSS, n. Ser., Volume 32 (1941), pp. 16-18 | MR | Zbl
[17] On degeneration of isotropic turbulence in an incompressible viscous liquid, C. R. (Dokl.) Acad. Sci. URSS, n. Ser., Volume 31 (1941), pp. 538-540 | MR
[18] The local structure of turbulence in incompressible viscous fluid for very large Reynold’s numbers, C. R. (Dokl.) Acad. Sci. URSS, n. Ser., Volume 30 (1941) no. 4, pp. 301-305 | MR
[19] Measurements of the turbulent energy dissipation rate, Phys. Fluids, Volume 14 (2002) no. 3, pp. 1288-1290 | DOI
[20] On the scaling of the turbulence energy dissipation rate, Phys. Fluids, Volume 27 (1984) no. 5, pp. 1048-1051 | DOI
[21] An update on the energy dissipation rate in isotropic turbulence, Phys. Fluids, Volume 10 (1998) no. 2, pp. 528-529 | DOI | MR | Zbl
[22] Dissipation in turbulent flows, Annual review of fluid mechanics. Vol. 47 (Annual Review of Fluid Mechanics), Annual Reviews, 2015 no. 47, pp. 95-114 | DOI | MR
Cité par Sources :
Commentaires - Politique