Comptes Rendus
Article de recherche - Équations aux dérivées partielles
Uniqueness of positive solutions to fractional nonlinear elliptic equations with harmonic potential
[Unicité des solutions positives aux équations elliptiques non linéaires fractionnaires à potentiel harmonique]
Comptes Rendus. Mathématique, Volume 363 (2025), pp. 353-363.

In this paper, we establish the uniqueness of positive solutions to the following fractional nonlinear elliptic equation with harmonic potential:

(Δ)su+(ω+|x|2)u=|u|p2u in Rn,

where n1, 0<s<1, ω>λ1,s, 2<p<2n(n2s)+, and λ1,s>0 is the lowest eigenvalue of the operator (Δ)s+|x|2. This solves an open question raised in [15] concerning the uniqueness of solutions to the equation.

Dans cet article, nous établissons l’unicité des solutions positives pour l’équation elliptique non linéaire fractionnaire suivante avec potentiel harmonique :

(Δ)su+(ω+|x|2)u=|u|p2u in Rn,

n1, 0<s<1, ω>λ1,s, 2<p<2n(n2s)+ et λ1,s>0 est la plus petite valeur propre de l’opérateur (Δ)s+|x|2. Cela résout une question ouverte soulevée dans [15] concernant l’unicité des solutions de cette équation.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.716
Classification : 35A02, 35R11
Keywords: Uniqueness, positive solutions, harmonic potential, fractional elliptic equations
Mots-clés : Unicité, solutions positives, potentiel harmonique, équations elliptiques fractionnaires

Tianxiang Gou 1 ; Vicenţiu D. Rădulescu 2, 3, 4, 5

1 School of Mathematics and Statistics, Xi’an Jiaotong University, 710049 Xi’an, Shaanxi, China
2 Faculty of Applied Mathematics, AGH University of Kraków, 30-059 Kraków, Poland
3 Department of Mathematics, University of Craiova, 200585 Craiova, Romania
4 Brno University of Technology, Technická 3058/10, 61600 Brno, Czech Republic
5 Simion Stoilow Institute of Mathematics of the Romanian Academy, 010702 Bucharest, Romania
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2025__363_G4_353_0,
     author = {Tianxiang Gou and Vicen\c{t}iu D. R\u{a}dulescu},
     title = {Uniqueness of positive solutions to fractional nonlinear elliptic equations with harmonic potential},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {353--363},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {363},
     year = {2025},
     doi = {10.5802/crmath.716},
     language = {en},
}
TY  - JOUR
AU  - Tianxiang Gou
AU  - Vicenţiu D. Rădulescu
TI  - Uniqueness of positive solutions to fractional nonlinear elliptic equations with harmonic potential
JO  - Comptes Rendus. Mathématique
PY  - 2025
SP  - 353
EP  - 363
VL  - 363
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.716
LA  - en
ID  - CRMATH_2025__363_G4_353_0
ER  - 
%0 Journal Article
%A Tianxiang Gou
%A Vicenţiu D. Rădulescu
%T Uniqueness of positive solutions to fractional nonlinear elliptic equations with harmonic potential
%J Comptes Rendus. Mathématique
%D 2025
%P 353-363
%V 363
%I Académie des sciences, Paris
%R 10.5802/crmath.716
%G en
%F CRMATH_2025__363_G4_353_0
Tianxiang Gou; Vicenţiu D. Rădulescu. Uniqueness of positive solutions to fractional nonlinear elliptic equations with harmonic potential. Comptes Rendus. Mathématique, Volume 363 (2025), pp. 353-363. doi : 10.5802/crmath.716. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.716/

[1] Charles J. Amick; John Francis Toland Uniqueness and related analytic properties for the Benjamin–Ono equation—a nonlinear Neumann problem in the plane, Acta Math., Volume 167 (1991) no. 1-2, pp. 107-126 | DOI | MR | Zbl

[2] Jiří Benedikt; Vladimir Bobkov; Raj Narayan Dhara; Petr Girg Nonradiality of second eigenfunctions of the fractional Laplacian in a ball, Proc. Am. Math. Soc., Volume 150 (2022) no. 12, pp. 5335-5348 | DOI | MR | Zbl

[3] Friedemann Brock A general rearrangement inequality à la Hardy–Littlewood, J. Inequal. Appl., Volume 5 (2000) no. 4, pp. 309-320 | DOI | MR | Zbl

[4] Mouhamed Moustapha Fall; Enrico Valdinoci Uniqueness and nondegeneracy of positive solutions of (-Δ)su+u=up in N when s is close to 1, Commun. Math. Phys., Volume 329 (2014) no. 1, pp. 383-404 | DOI | MR | Zbl

[5] Mouhamed Moustapha Fall; Tobias Weth Nondegeneracy properties and uniqueness of positive solutions to a class of fractional semilinear equations (2024) | arXiv

[6] Patricio Felmer; Alexander Quaas; Jinggang Tan Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian, Proc. R. Soc. Edinb., Sect. A, Math., Volume 142 (2012) no. 6, pp. 1237-1262 | DOI | MR | Zbl

[7] Rupert L. Frank; Enno Lenzmann Uniqueness of non-linear ground states for fractional Laplacians in , Acta Math., Volume 210 (2013) no. 2, pp. 261-318 | DOI | MR | Zbl

[8] Rupert L. Frank; Enno Lenzmann; Luis Silvestre Uniqueness of radial solutions for the fractional Laplacian, Commun. Pure Appl. Math., Volume 69 (2016) no. 9, pp. 1671-1726 | DOI | MR | Zbl

[9] Tianxiang Gou Uniqueness of ground states to fractional nonlinear elliptic equations with harmonic potential, Proc. R. Soc. Edinb., Sect. A, Math. (2024), p. 1–14 | DOI

[10] Munemitsu Hirose; Masahito Ohta Structure of positive radial solutions to scalar field equations with harmonic potential, J. Differ. Equations, Volume 178 (2002) no. 2, pp. 519-540 | DOI | MR | Zbl

[11] Munemitsu Hirose; Masahito Ohta Uniqueness of positive solutions to scalar field equations with harmonic potential, Funkc. Ekvacioj, Volume 50 (2007) no. 1, pp. 67-100 | DOI | MR | Zbl

[12] Man Kam Kwong Uniqueness of positive solutions of Δu-u+up=0 in Rn, Arch. Ration. Mech. Anal., Volume 105 (1989) no. 3, pp. 243-266 | DOI | MR | Zbl

[13] Nikolai Laskin Fractional quantum mechanics and Lévy path integrals, Phys. Lett. A, Volume 268 (2000) no. 4-6, pp. 298-305 | DOI | MR | Zbl

[14] Nikolai Laskin Fractional Schrödinger equation, Phys. Rev. E (3), Volume 66 (2002) no. 5, 056108, 7 pages | DOI | MR

[15] Milena Stanislavova; Atanas G. Stefanov Ground states for the nonlinear Schrödinger equation under a general trapping potential, J. Evol. Equ., Volume 21 (2021) no. 1, pp. 671-697 | DOI | MR | Zbl

[16] Michel Willem Minimax theorems, Progress in Nonlinear Differential Equations and their Applications, 24, Birkhäuser, 1996, x+162 pages | DOI | MR | Zbl

[17] Shoji Yotsutani Pohozaev identity and its applications, RIMS Kokyuroku, Volume 834 (1993), pp. 80-90 | MR

Cité par Sources :

Commentaires - Politique