Comptes Rendus
Article de recherche - Équations aux dérivées partielles
Existence of an extremal function of critical Sobolev embedding with an α-homogeneous weight
[Existence d’une fonction extrémale d’une injéction de Sobolev critique avec des poids homogènes d’ordre α]
Comptes Rendus. Mathématique, Volume 363 (2025), pp. 479-485.

In [Calc. Var. Partial Differ. Equ. 60 (2021), no. 1, article no. 16 (27 pages)], we revisited a critical Sobolev-type embedding for weighted Sobolev spaces as introduced in [J. Differ. Equations 255 (2013), no. 11, pp. 4312–4336] by Cabré and Ros-Oton. In the same paper, we announced to explore the existence of an extremal function within this framework. In this current work, we not only provide a positive affirmation to this inquiry but extend it to a broader range of weights known as α-homogeneous weights.

Dans le papier [Calc. Var. Partial Differ. Equ. 60 (2021), no. 1, article no. 16 (27 pages)], nous avons revisité une injection de Sobolev critique avec des poids comme introduit dans [J. Differ. Equations 255 (2013), no. 11, pp. 4312–4336] par Cabré et Ros-Oton. Dans le même article, nous avons annoncé d’établir l’existence d’une fonction extrémale sous cette hypothèse. Dans ce papier, nous présentons un résultat affirmatif et nous affaiblissons nos hypothèses.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.718
Classification : 46E35, 46E30, 35A23, 26D10
Keywords: Trudinger–Moser inequality, critical Sobolev embedding, Orlicz exponential space, α-homogeneous weight, extremal function
Mots-clés : Inégalité de Trudinger–Moser, injection de Sobolev critique, espace d’Orlicz exponentiel, poids homogènes d’ordre α, fonction extrémale

Petr Gurka 1, 2, 3 ; Daniel Hauer 4, 5

1 Department of Mathematics, Czech University of Life Sciences Prague, 165 21, Prague 6, Czech Republic
2 Department of Mathematics, College of Polytechnics Jihlava, Tolstého 16, 586 01, Jihlava, Czech Republic
3 Department of Mathematical Analysis, Faculty of Mathematics and Physics, Charles University, Sokolovská 83, 186 75 Praha 8, Czech Republic
4 Brandenburg University of Technology Cottbus-Senftenberg, Platz der Deutschen Einheit 1, 03046 Cottbus, Germany
5 School of Mathematics and Statistics, The University of Sydney, Sydney, NSW, 2006, Australia
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2025__363_G5_479_0,
     author = {Petr Gurka and Daniel Hauer},
     title = {Existence of an extremal function of critical {Sobolev} embedding with an $\alpha $-homogeneous weight},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {479--485},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {363},
     year = {2025},
     doi = {10.5802/crmath.718},
     language = {en},
}
TY  - JOUR
AU  - Petr Gurka
AU  - Daniel Hauer
TI  - Existence of an extremal function of critical Sobolev embedding with an $\alpha $-homogeneous weight
JO  - Comptes Rendus. Mathématique
PY  - 2025
SP  - 479
EP  - 485
VL  - 363
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.718
LA  - en
ID  - CRMATH_2025__363_G5_479_0
ER  - 
%0 Journal Article
%A Petr Gurka
%A Daniel Hauer
%T Existence of an extremal function of critical Sobolev embedding with an $\alpha $-homogeneous weight
%J Comptes Rendus. Mathématique
%D 2025
%P 479-485
%V 363
%I Académie des sciences, Paris
%R 10.5802/crmath.718
%G en
%F CRMATH_2025__363_G5_479_0
Petr Gurka; Daniel Hauer. Existence of an extremal function of critical Sobolev embedding with an $\alpha $-homogeneous weight. Comptes Rendus. Mathématique, Volume 363 (2025), pp. 479-485. doi : 10.5802/crmath.718. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.718/

[1] Xavier Cabré; Xavier Ros-Oton Sobolev and isoperimetric inequalities with monomial weights, J. Differ. Equations, Volume 255 (2013) no. 11, pp. 4312-4336 | DOI | MR | Zbl

[2] Xavier Cabré; Xavier Ros-Oton; Joaquim Serra Sharp isoperimetric inequalities via the ABP method, J. Eur. Math. Soc., Volume 18 (2016) no. 12, pp. 2971-2998 | DOI | MR | Zbl

[3] Lennart Carleson; Sun-Yung A. Chang On the existence of an extremal function for an inequality of J. Moser, Bull. Sci. Math. (2), Volume 110 (1986) no. 2, pp. 113-127 | MR | Zbl

[4] Martin Flucher Extremal functions for the Trudinger–Moser inequality in 2 dimensions, Comment. Math. Helv., Volume 67 (1992) no. 3, pp. 471-497 | DOI | MR | Zbl

[5] Petr Gurka; Daniel Hauer More insights into the Trudinger–Moser inequality with monomial weight, Calc. Var. Partial Differ. Equ., Volume 60 (2021) no. 1, 16, 27 pages | DOI | MR | Zbl

[6] Petr Gurka; Jan Lang; Zdeněk Mihula Quantitative analysis of optimal Sobolev–Lorentz embeddings with α-homogeneous weights, J. Geom. Anal., Volume 35 (2025) no. 5, 146, 22 pages | DOI | MR | Zbl

[7] Steve Hudson; Mark Leckband Extremals for a Moser–Jodeit exponential inequality., Pac. J. Math., Volume 206 (2002) no. 1, pp. 113-128 | DOI | MR | Zbl

[8] Max Jr. Jodeit An inequality for the indefinite integrals of a function in Lq, Stud. Math., Volume 44 (1972), pp. 545-554 | DOI | MR | Zbl

[9] Nguyen Lam Sharp Trudinger–Moser inequalities with monomial weights, NoDEA, Nonlinear Differ. Equ. Appl., Volume 24 (2017) no. 4, 39, 21 pages | DOI | MR | Zbl

[10] Kai-Ching Lin Extremal functions for Moser’s inequality, Trans. Am. Math. Soc., Volume 348 (1996) no. 7, pp. 2663-2671 | DOI | MR | Zbl

[11] Jürgen Moser A sharp form of an inequality by Trudinger, Indiana Univ. Math. J., Volume 20 (1971), pp. 1077-1092 | DOI | MR | Zbl

[12] Stanislav I. Pokhozhaev Eigenfunctions of the equation Δu+λf(u)=0, Sov. Math., Dokl., Volume 6 (1965), pp. 1408-1411 | Zbl

[13] Michael Struwe Critical points of embeddings of H01,n into Orlicz spaces, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 5 (1988) no. 5, pp. 425-464 | DOI | MR | Zbl

[14] Neil Sidney Trudinger On imbeddings into Orlicz spaces and some applications, J. Math. Mech., Volume 17 (1967), pp. 473-483 | MR | Zbl

[15] Viktor Iosifovich Yudovich Some estimates connected with integral operators and with solutions of elliptic equations, Sov. Math., Dokl., Volume 2 (1961), pp. 746-749 | Zbl

Cité par Sources :

Commentaires - Politique