[Existence d’une fonction extrémale d’une injéction de Sobolev critique avec des poids homogènes d’ordre
In [Calc. Var. Partial Differ. Equ. 60 (2021), no. 1, article no. 16 (27 pages)], we revisited a critical Sobolev-type embedding for weighted Sobolev spaces as introduced in [J. Differ. Equations 255 (2013), no. 11, pp. 4312–4336] by Cabré and Ros-Oton. In the same paper, we announced to explore the existence of an extremal function within this framework. In this current work, we not only provide a positive affirmation to this inquiry but extend it to a broader range of weights known as
Dans le papier [Calc. Var. Partial Differ. Equ. 60 (2021), no. 1, article no. 16 (27 pages)], nous avons revisité une injection de Sobolev critique avec des poids comme introduit dans [J. Differ. Equations 255 (2013), no. 11, pp. 4312–4336] par Cabré et Ros-Oton. Dans le même article, nous avons annoncé d’établir l’existence d’une fonction extrémale sous cette hypothèse. Dans ce papier, nous présentons un résultat affirmatif et nous affaiblissons nos hypothèses.
Révisé le :
Accepté le :
Publié le :
Keywords: Trudinger–Moser inequality, critical Sobolev embedding, Orlicz exponential space,
Mots-clés : Inégalité de Trudinger–Moser, injection de Sobolev critique, espace d’Orlicz exponentiel, poids homogènes d’ordre
Petr Gurka 1, 2, 3 ; Daniel Hauer 4, 5

@article{CRMATH_2025__363_G5_479_0, author = {Petr Gurka and Daniel Hauer}, title = {Existence of an extremal function of critical {Sobolev} embedding with an $\alpha $-homogeneous weight}, journal = {Comptes Rendus. Math\'ematique}, pages = {479--485}, publisher = {Acad\'emie des sciences, Paris}, volume = {363}, year = {2025}, doi = {10.5802/crmath.718}, language = {en}, }
TY - JOUR AU - Petr Gurka AU - Daniel Hauer TI - Existence of an extremal function of critical Sobolev embedding with an $\alpha $-homogeneous weight JO - Comptes Rendus. Mathématique PY - 2025 SP - 479 EP - 485 VL - 363 PB - Académie des sciences, Paris DO - 10.5802/crmath.718 LA - en ID - CRMATH_2025__363_G5_479_0 ER -
Petr Gurka; Daniel Hauer. Existence of an extremal function of critical Sobolev embedding with an $\alpha $-homogeneous weight. Comptes Rendus. Mathématique, Volume 363 (2025), pp. 479-485. doi : 10.5802/crmath.718. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.718/
[1] Sobolev and isoperimetric inequalities with monomial weights, J. Differ. Equations, Volume 255 (2013) no. 11, pp. 4312-4336 | DOI | MR | Zbl
[2] Sharp isoperimetric inequalities via the ABP method, J. Eur. Math. Soc., Volume 18 (2016) no. 12, pp. 2971-2998 | DOI | MR | Zbl
[3] On the existence of an extremal function for an inequality of J. Moser, Bull. Sci. Math. (2), Volume 110 (1986) no. 2, pp. 113-127 | MR | Zbl
[4] Extremal functions for the Trudinger–Moser inequality in
[5] More insights into the Trudinger–Moser inequality with monomial weight, Calc. Var. Partial Differ. Equ., Volume 60 (2021) no. 1, 16, 27 pages | DOI | MR | Zbl
[6] Quantitative analysis of optimal Sobolev–Lorentz embeddings with
[7] Extremals for a Moser–Jodeit exponential inequality., Pac. J. Math., Volume 206 (2002) no. 1, pp. 113-128 | DOI | MR | Zbl
[8] An inequality for the indefinite integrals of a function in
[9] Sharp Trudinger–Moser inequalities with monomial weights, NoDEA, Nonlinear Differ. Equ. Appl., Volume 24 (2017) no. 4, 39, 21 pages | DOI | MR | Zbl
[10] Extremal functions for Moser’s inequality, Trans. Am. Math. Soc., Volume 348 (1996) no. 7, pp. 2663-2671 | DOI | MR | Zbl
[11] A sharp form of an inequality by Trudinger, Indiana Univ. Math. J., Volume 20 (1971), pp. 1077-1092 | DOI | MR | Zbl
[12] Eigenfunctions of the equation
[13] Critical points of embeddings of
[14] On imbeddings into Orlicz spaces and some applications, J. Math. Mech., Volume 17 (1967), pp. 473-483 | MR | Zbl
[15] Some estimates connected with integral operators and with solutions of elliptic equations, Sov. Math., Dokl., Volume 2 (1961), pp. 746-749 | Zbl
Cité par Sources :
Commentaires - Politique