Comptes Rendus
Article de recherche - Analyse fonctionnelle
On zero eigenvalue of invariant Schrödinger operators with point interactions at vertices of some regular polyhedra
[Sur la valeur propre nulle des opérateurs de Schrödinger invariants avec interactions ponctuelles aux sommets de certains polyèdres réguliers]
Comptes Rendus. Mathématique, Volume 363 (2025), pp. 629-639.

Following Berezin and Faddeev, by a Schrödinger operator with point interactions:

Δ+j=1mαjδ(xxj),X={xj}1mR3,{αj}1mR,

one means any selfadjoint extension of the restriction ΔX of the Laplace operator Δ to the subset {fH2(R3):f(xj)=0, 1jm} of the Sobolev space H2(R3).

In the present paper the above set of interactions X is assumed to be a vertex set of a certain regular polyhedron, and selfadjoint extensions (realizations) invariant under the symmetry group of X={xj}1m are studied.

Such realizations HB are parametrized by special matrices B=BCm×m. We describe all such selfadjoint realizations with non-trivial kernels. By this we continue investigation by Grinevich–Novikov and ours relating to regular polygons. Besides, for arbitrary realizations the estimate dim(kerHB)m1 is proved, and realizations with all feasible dim(kerHB) are described.

Particular attention is paid to realizations with maximum value dim(kerHB)=m1. One of them is the Krein realization, which is the minimal positive selfadjoint extension of the operator ΔX0.

D’après Berezin et Faddeev, par un opérateur de Schrödinger avec des interactions ponctuelles :

Δ+j=1mαjδ(xxj),X={xj}1mR3,{αj}1mR,

on entend toute extension autoadjointe de la restriction ΔX de l’opérateur de Laplace Δ au sous-ensemble {fH2(R3):f(xj)=0, 1jm} de l’espace de Sobolev H2(R3).

Dans le présent article, l’ensemble d’interactions X ci-dessus est supposé être un ensemble de sommets d’un certain polyèdre régulier, et des extensions (réalisations) autoadjointes invariantes sous le groupe de symétrie de X={xj}1m sont étudiées.

De telles réalisations HB sont paramétrées par des matrices spéciales B=BCm×m. Nous décrivons toutes ces réalisations autoadjointes avec des noyaux non triviaux. Nous poursuivons ainsi l’investigation de Grinevich–Novikov et la nôtre concernant les polygones réguliers. De plus, pour des réalisations arbitraires, l’estimation dim(kerHB)m1 est prouvée, et des réalisations avec tous les dim(kerHB) réalisables sont décrites.

Une attention particulière est accordée aux réalisations avec la valeur maximale dim(kerHB)=m1. L’une d’elles est la réalisation de Krein, qui est l’extension autoadjointe positive minimale de l’opérateur ΔX0.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.719
Classification : 47A57
Keywords: Schrödinger operators with point interactions, invariant operators, Krein realization, multiplicity of zero eigenvalue
Mots-clés : Opérateurs de Schrödinger avec interactions ponctuelles, opérateurs invariants, réalisation de Krein, multiplicité de valeur propre nulle

Mark M. Malamud 1 ; Vladimir V. Marchenko 2, 3

1 Saint Petersburg State University, Saint Petersburg, Russia
2 Bauman Moscow State Technical University, Moscow, Russia
3 Institute of Applied Mathematics and Mechanics, Donetsk, Russia
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2025__363_G7_629_0,
     author = {Mark M. Malamud and Vladimir V. Marchenko},
     title = {On zero eigenvalue of invariant {Schr\"odinger} operators with point interactions at vertices of some regular polyhedra},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {629--639},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {363},
     year = {2025},
     doi = {10.5802/crmath.719},
     language = {en},
}
TY  - JOUR
AU  - Mark M. Malamud
AU  - Vladimir V. Marchenko
TI  - On zero eigenvalue of invariant Schrödinger operators with point interactions at vertices of some regular polyhedra
JO  - Comptes Rendus. Mathématique
PY  - 2025
SP  - 629
EP  - 639
VL  - 363
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.719
LA  - en
ID  - CRMATH_2025__363_G7_629_0
ER  - 
%0 Journal Article
%A Mark M. Malamud
%A Vladimir V. Marchenko
%T On zero eigenvalue of invariant Schrödinger operators with point interactions at vertices of some regular polyhedra
%J Comptes Rendus. Mathématique
%D 2025
%P 629-639
%V 363
%I Académie des sciences, Paris
%R 10.5802/crmath.719
%G en
%F CRMATH_2025__363_G7_629_0
Mark M. Malamud; Vladimir V. Marchenko. On zero eigenvalue of invariant Schrödinger operators with point interactions at vertices of some regular polyhedra. Comptes Rendus. Mathématique, Volume 363 (2025), pp. 629-639. doi : 10.5802/crmath.719. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.719/

[1] Sergio Albeverio; Friedrich Gesztesy; Raphael Høegh-Krohn; Helge Holden Solvable models in quantum mechanics, Texts and Monographs in Physics, Springer, 1988, xiv+452 pages | DOI | MR | Zbl

[2] Feliks Aleksandrovich Berezin; Lyudvig Dmitrievich Faddeev A remark on Schrödinger’s equation with a singular potential, Sov. Math., Dokl., Volume 2 (1961), pp. 372-375 | Zbl

[3] Volodymyr Oleksandrovych Derkach; Mark M. Malamud Generalized resolvents and the boundary value problems for Hermitian operators with gaps, J. Funct. Anal., Volume 95 (1991) no. 1, pp. 1-95 | DOI | MR | Zbl

[4] Volodymyr Oleksandrovych Derkach; Mark M. Malamud Extension theory of symmetric operators and boundary value problems, Institute of Mathematics, NAS of Ukraine, 2017, 573 pages

[5] Natalʹya I. Goloshchapova; Mark M. Malamud; Viktor P. Zastavnyi Radial positive definite functions and spectral theory of the Schrödinger operators with point interactions, Math. Nachr., Volume 285 (2012) no. 14-15, pp. 1839-1859 | DOI | MR | Zbl

[6] Valentyna Ivanivna Gorbachuk; Myroslav Lvovych Gorbachuk Boundary value problems for operator differential equations, Mathematics and its Applications (Soviet Series), 48, Kluwer Academic Publishers, 1991, xii+347 pages (Translated and revised from the 1984 Russian original) | DOI | MR | Zbl

[7] Petr G. Grinevich; Roman G. Novikov Multipoint scatterers with bound states at zero energy, Theor. Math. Phys., Volume 193 (2017) no. 2, pp. 309-314 | DOI | MR

[8] Petr G. Grinevich; Roman G. Novikov Spectral inequality for Schrödinger’s equation with multipoint potential, Russ. Math. Surv., Volume 77 (2022) no. 6, pp. 69-76 | DOI | MR

[9] Tosio Kato Perturbation theory for linear operators, Grundlehren der Mathematischen Wissenschaften, 132, Springer, 1966, xix+592 pages | MR | Zbl

[10] Mark M. Malamud; Vladimir V. Marchenko Invariant Schrödinger operators with point interactions at the vertices of a regular polyhedron, Math. Notes, Volume 110 (2021) no. 3-4, pp. 463-469 | DOI | MR | Zbl

[11] Mark M. Malamud; Vladimir V. Marchenko On kernels of invariant Schrödinger operators with point interactions. Grinevich-Novikov conjecture, Dokl. Math., Volume 109 (2024) no. 2, pp. 125-129 | DOI | MR | Zbl

[12] Mark M. Malamud; Konrad Schmüdgen Spectral theory of Schrödinger operators with infinitely many point interactions and radial positive definite functions, J. Funct. Anal., Volume 263 (2012) no. 10, pp. 3144-3194 | DOI | MR | Zbl

[13] Michael Reed; Barry Simon Methods of modern mathematical physics. I. Functional analysis, Academic Press Inc., 1972, xvii+325 pages | MR | Zbl

[14] Iskander Asanovich Taĭmanov; S. P. Tsarëv Two-dimensional Schrödinger operators with rapidly decaying rational potential and multidimensional L2-kernel, Russ. Math. Surv., Volume 62 (2007) no. 3, pp. 631-633 | DOI | MR | Zbl

[15] Iskander Asanovich Taĭmanov; S. P. Tsarëv Two-dimensional rational solitons and their blowup via the Moutard transformation, Theor. Math. Phys., Volume 157 (2008) no. 2, pp. 1525-1541 | DOI | Zbl

Cité par Sources :

Commentaires - Politique