[Sur la valeur propre nulle des opérateurs de Schrödinger invariants avec interactions ponctuelles aux sommets de certains polyèdres réguliers]
Following Berezin and Faddeev, by a Schrödinger operator with point interactions:
|
one means any selfadjoint extension of the restriction
In the present paper the above set of interactions
Such realizations
Particular attention is paid to realizations with maximum value
D’après Berezin et Faddeev, par un opérateur de Schrödinger avec des interactions ponctuelles :
|
on entend toute extension autoadjointe de la restriction
Dans le présent article, l’ensemble d’interactions
De telles réalisations
Une attention particulière est accordée aux réalisations avec la valeur maximale
Révisé le :
Accepté le :
Publié le :
Keywords: Schrödinger operators with point interactions, invariant operators, Krein realization, multiplicity of zero eigenvalue
Mots-clés : Opérateurs de Schrödinger avec interactions ponctuelles, opérateurs invariants, réalisation de Krein, multiplicité de valeur propre nulle
Mark M. Malamud 1 ; Vladimir V. Marchenko 2, 3

@article{CRMATH_2025__363_G7_629_0, author = {Mark M. Malamud and Vladimir V. Marchenko}, title = {On zero eigenvalue of invariant {Schr\"odinger} operators with point interactions at vertices of some regular polyhedra}, journal = {Comptes Rendus. Math\'ematique}, pages = {629--639}, publisher = {Acad\'emie des sciences, Paris}, volume = {363}, year = {2025}, doi = {10.5802/crmath.719}, language = {en}, }
TY - JOUR AU - Mark M. Malamud AU - Vladimir V. Marchenko TI - On zero eigenvalue of invariant Schrödinger operators with point interactions at vertices of some regular polyhedra JO - Comptes Rendus. Mathématique PY - 2025 SP - 629 EP - 639 VL - 363 PB - Académie des sciences, Paris DO - 10.5802/crmath.719 LA - en ID - CRMATH_2025__363_G7_629_0 ER -
%0 Journal Article %A Mark M. Malamud %A Vladimir V. Marchenko %T On zero eigenvalue of invariant Schrödinger operators with point interactions at vertices of some regular polyhedra %J Comptes Rendus. Mathématique %D 2025 %P 629-639 %V 363 %I Académie des sciences, Paris %R 10.5802/crmath.719 %G en %F CRMATH_2025__363_G7_629_0
Mark M. Malamud; Vladimir V. Marchenko. On zero eigenvalue of invariant Schrödinger operators with point interactions at vertices of some regular polyhedra. Comptes Rendus. Mathématique, Volume 363 (2025), pp. 629-639. doi : 10.5802/crmath.719. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.719/
[1] Solvable models in quantum mechanics, Texts and Monographs in Physics, Springer, 1988, xiv+452 pages | DOI | MR | Zbl
[2] A remark on Schrödinger’s equation with a singular potential, Sov. Math., Dokl., Volume 2 (1961), pp. 372-375 | Zbl
[3] Generalized resolvents and the boundary value problems for Hermitian operators with gaps, J. Funct. Anal., Volume 95 (1991) no. 1, pp. 1-95 | DOI | MR | Zbl
[4] Extension theory of symmetric operators and boundary value problems, Institute of Mathematics, NAS of Ukraine, 2017, 573 pages
[5] Radial positive definite functions and spectral theory of the Schrödinger operators with point interactions, Math. Nachr., Volume 285 (2012) no. 14-15, pp. 1839-1859 | DOI | MR | Zbl
[6] Boundary value problems for operator differential equations, Mathematics and its Applications (Soviet Series), 48, Kluwer Academic Publishers, 1991, xii+347 pages (Translated and revised from the 1984 Russian original) | DOI | MR | Zbl
[7] Multipoint scatterers with bound states at zero energy, Theor. Math. Phys., Volume 193 (2017) no. 2, pp. 309-314 | DOI | MR
[8] Spectral inequality for Schrödinger’s equation with multipoint potential, Russ. Math. Surv., Volume 77 (2022) no. 6, pp. 69-76 | DOI | MR
[9] Perturbation theory for linear operators, Grundlehren der Mathematischen Wissenschaften, 132, Springer, 1966, xix+592 pages | MR | Zbl
[10] Invariant Schrödinger operators with point interactions at the vertices of a regular polyhedron, Math. Notes, Volume 110 (2021) no. 3-4, pp. 463-469 | DOI | MR | Zbl
[11] On kernels of invariant Schrödinger operators with point interactions. Grinevich-Novikov conjecture, Dokl. Math., Volume 109 (2024) no. 2, pp. 125-129 | DOI | MR | Zbl
[12] Spectral theory of Schrödinger operators with infinitely many point interactions and radial positive definite functions, J. Funct. Anal., Volume 263 (2012) no. 10, pp. 3144-3194 | DOI | MR | Zbl
[13] Methods of modern mathematical physics. I. Functional analysis, Academic Press Inc., 1972, xvii+325 pages | MR | Zbl
[14] Two-dimensional Schrödinger operators with rapidly decaying rational potential and multidimensional
[15] Two-dimensional rational solitons and their blowup via the Moutard transformation, Theor. Math. Phys., Volume 157 (2008) no. 2, pp. 1525-1541 | DOI | Zbl
Cité par Sources :
Commentaires - Politique