[Perturbations relativement bornées et relativement de classe trace]
In this note we study the behaviour of functions of self-adjoint operators under relatively bounded and relatively trace class perturbations. We introduce and study the class of relatively operator Lipschitz functions. We obtain a trace formula in the case of relatively trace class perturbations and show that this class of functions is the maximal class of functions for which the trace formula holds. Our method also gives us a new approach to the inequality
Dans cette note nous étudions le comportement des fonctions d’opérateurs auto-adjoints sous des perturbations relativement dans la classe des opérateurs à trace et relativement bornées. Nous introduisons et étudions la classe de fonctions relativement lipschitziennes opératorielles. Nous obtenons une formule de trace dans le cas de perturbations relativement à trace et montrons que cette classe de fonctions est maximale pour la validité de la formule de trace. Notre méthode nous donne une nouvelle approche de l’inégalité
Révisé le :
Accepté le :
Publié le :
Keywords: Relatively bounded perturbation, relatively trace class perturbation, relatively operator Lipschitz class, trace formula, self-adjoint operators, double operator integrals
Mots-clés : Perturbations relativement bornées, perturbations relativement à trace, fonctions relativement lipschitziennes opératorielles, formules des traces, opérateurs auto-adjoints, intégrales d’opérateurs doubles
Aleksei B. Aleksandrov 1, 2 ; Vladimir V. Peller 1, 2

@article{CRMATH_2025__363_G4_377_0, author = {Aleksei B. Aleksandrov and Vladimir V. Peller}, title = {Relatively bounded and relatively trace class perturbations}, journal = {Comptes Rendus. Math\'ematique}, pages = {377--382}, publisher = {Acad\'emie des sciences, Paris}, volume = {363}, year = {2025}, doi = {10.5802/crmath.722}, language = {en}, }
Aleksei B. Aleksandrov; Vladimir V. Peller. Relatively bounded and relatively trace class perturbations. Comptes Rendus. Mathématique, Volume 363 (2025), pp. 377-382. doi : 10.5802/crmath.722. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.722/
[1] Operator Lipschitz functions, Russ. Math. Surv., Volume 71 (2016) no. 4, pp. 605-702 | DOI | MR | Zbl
[2] Functions of self-adjoint operators under relatively bounded and relatively trace class perturbations. Relatively operator Lipschitz functions (2025) | arXiv
[3] Double Stieltjes operator integrals, Probl. Mat. Fiz., Volume 1 (1966), pp. 33-67 | Zbl
[4] Double Stieltjes operator integrals. III, Probl. Mat. Fiz., Volume 6 (1973), pp. 27-53 | Zbl
[5] Remarks on the spectral shift function, J. Sov. Math., Volume 3 (1975), pp. 408-419 | DOI | Zbl
[6] Trace formulas for relative Schatten class perturbations, J. Funct. Anal., Volume 274 (2018), pp. 3377-3410 | DOI | MR | Zbl
[7] Integration and differentiation of functions of Hermitian operators and application to the theory of perturbations (Russian), Voronež. Gos. Univ. Trudy Sem. Funkcional. Anal., Volume 1 (1956), pp. 81-105 | MR
[8] On the trace formula in perturbation theory (Russian), Mat. Sb., Volume 33 (1953), pp. 597-626 | Zbl
[9] On a problem in perturbation theory connected with quantum statistics (Russian), Usp. Mat. Nauk, Volume 7 (1952), pp. 171-180
[10] The Lifshits–Krein trace formula and operator Lipschitz functions, Proc. Am. Math. Soc., Volume 144 (2016), pp. 5207-5215 | DOI | Zbl
Cité par Sources :
Commentaires - Politique