Comptes Rendus
Article de recherche - Analyse fonctionnelle, Analyse harmonique
Relatively bounded and relatively trace class perturbations
[Perturbations relativement bornées et relativement de classe trace]
Comptes Rendus. Mathématique, Volume 363 (2025), pp. 377-382.

In this note we study the behaviour of functions of self-adjoint operators under relatively bounded and relatively trace class perturbations. We introduce and study the class of relatively operator Lipschitz functions. We obtain a trace formula in the case of relatively trace class perturbations and show that this class of functions is the maximal class of functions for which the trace formula holds. Our method also gives us a new approach to the inequality |ξ(t)|(1+|t|)1dt< for the spectral shift function ξ in the case of relatively trace class perturbations.

Dans cette note nous étudions le comportement des fonctions d’opérateurs auto-adjoints sous des perturbations relativement dans la classe des opérateurs à trace et relativement bornées. Nous introduisons et étudions la classe de fonctions relativement lipschitziennes opératorielles. Nous obtenons une formule de trace dans le cas de perturbations relativement à trace et montrons que cette classe de fonctions est maximale pour la validité de la formule de trace. Notre méthode nous donne une nouvelle approche de l’inégalité |ξ(t)|(1+|t|)1dt< pour la fonction ξ de décalage spectral.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.722
Classification : 47A55
Keywords: Relatively bounded perturbation, relatively trace class perturbation, relatively operator Lipschitz class, trace formula, self-adjoint operators, double operator integrals
Mots-clés : Perturbations relativement bornées, perturbations relativement à trace, fonctions relativement lipschitziennes opératorielles, formules des traces, opérateurs auto-adjoints, intégrales d’opérateurs doubles

Aleksei B. Aleksandrov 1, 2 ; Vladimir V. Peller 1, 2

1 St. Petersburg State University, Universitetskaya nab., 7/9, 199034 St. Petersburg, Russia
2 St. Petersburg Department, Steklov Institute of Mathematics, Russian Academy of Sciences, Fontanka 27, 191023 St. Petersburg, Russia
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2025__363_G4_377_0,
     author = {Aleksei B. Aleksandrov and Vladimir V. Peller},
     title = {Relatively bounded and relatively trace class perturbations},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {377--382},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {363},
     year = {2025},
     doi = {10.5802/crmath.722},
     language = {en},
}
TY  - JOUR
AU  - Aleksei B. Aleksandrov
AU  - Vladimir V. Peller
TI  - Relatively bounded and relatively trace class perturbations
JO  - Comptes Rendus. Mathématique
PY  - 2025
SP  - 377
EP  - 382
VL  - 363
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.722
LA  - en
ID  - CRMATH_2025__363_G4_377_0
ER  - 
%0 Journal Article
%A Aleksei B. Aleksandrov
%A Vladimir V. Peller
%T Relatively bounded and relatively trace class perturbations
%J Comptes Rendus. Mathématique
%D 2025
%P 377-382
%V 363
%I Académie des sciences, Paris
%R 10.5802/crmath.722
%G en
%F CRMATH_2025__363_G4_377_0
Aleksei B. Aleksandrov; Vladimir V. Peller. Relatively bounded and relatively trace class perturbations. Comptes Rendus. Mathématique, Volume 363 (2025), pp. 377-382. doi : 10.5802/crmath.722. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.722/

[1] Aleksei B. Aleksandrov; Vladimir V. Peller Operator Lipschitz functions, Russ. Math. Surv., Volume 71 (2016) no. 4, pp. 605-702 | DOI | MR | Zbl

[2] Aleksei B. Aleksandrov; Vladimir V. Peller Functions of self-adjoint operators under relatively bounded and relatively trace class perturbations. Relatively operator Lipschitz functions (2025) | arXiv

[3] Mikhail Shlëmovich Birman; Mikhail Zakharovich Solomyak Double Stieltjes operator integrals, Probl. Mat. Fiz., Volume 1 (1966), pp. 33-67 | Zbl

[4] Mikhail Shlëmovich Birman; Mikhail Zakharovich Solomyak Double Stieltjes operator integrals. III, Probl. Mat. Fiz., Volume 6 (1973), pp. 27-53 | Zbl

[5] Mikhail Shlëmovich Birman; Mikhail Zakharovich Solomyak Remarks on the spectral shift function, J. Sov. Math., Volume 3 (1975), pp. 408-419 | DOI | Zbl

[6] Arup Chattopadhyay; Anna Skripka Trace formulas for relative Schatten class perturbations, J. Funct. Anal., Volume 274 (2018), pp. 3377-3410 | DOI | MR | Zbl

[7] Yuriĭ Lʹvovich Daletskiĭ; Selim Grigorʹevich Kreĭn Integration and differentiation of functions of Hermitian operators and application to the theory of perturbations (Russian), Voronež. Gos. Univ. Trudy Sem. Funkcional. Anal., Volume 1 (1956), pp. 81-105 | MR

[8] Mark Grigorʹevich Kreĭn On the trace formula in perturbation theory (Russian), Mat. Sb., Volume 33 (1953), pp. 597-626 | Zbl

[9] Ilʹya Mikhaĭlovich Lifshits On a problem in perturbation theory connected with quantum statistics (Russian), Usp. Mat. Nauk, Volume 7 (1952), pp. 171-180

[10] Vladimir V. Peller The Lifshits–Krein trace formula and operator Lipschitz functions, Proc. Am. Math. Soc., Volume 144 (2016), pp. 5207-5215 | DOI | Zbl

Cité par Sources :

Commentaires - Politique