[Fonctions dʼuplets dʼopérateurs autoadjoints perturbés]
Dans cette Note nous généralisons des résultats de Aleksandrov et Peller (2010) [2,3], Aleksandrov et al. (2011) [6], Peller (1985) [13], Peller (1990) [14] en cas de fonctions dʼopérateurs auto-adjoints et dʼopérateurs normaux. Nous considérons le problème similaire pour les fonctions de n-uplets dʼopérateurs auto-adjoints qui commutent. En particulier, nous démontrons que si f est une fonction de la classe de Besov , alors elle est lipschitzienne opératorielle. En outre, nous montrons que si f appartient à lʼespace de Hölder dʼordre α, alors por tous n-uplets et dʼopérateurs auto-adjoints qui commutent. Nous considérons aussi le cas de module de continuité arbitraire et le cas où les opérateurs appartiennent à lʼespace de Schatten–von Neumann .
We generalize earlier results of Aleksandrov and Peller (2010) [2,3], Aleksandrov et al. (2011) [6], Peller (1985) [13], Peller (1990) [14] to the case of functions of n-tuples of commuting self-adjoint operators. In particular, we prove that if a function f belongs to the Besov space , then f is operator Lipschitz and we show that if f satisfies a Hölder condition of order α, then for all n-tuples of commuting self-adjoint operators and . We also consider the case of arbitrary moduli of continuity and the case when the operators belong to the Schatten–von Neumann class .
Accepté le :
Publié le :
Fedor Nazarov 1 ; Vladimir Peller 2
@article{CRMATH_2012__350_7-8_349_0, author = {Fedor Nazarov and Vladimir Peller}, title = {Functions of perturbed tuples of self-adjoint operators}, journal = {Comptes Rendus. Math\'ematique}, pages = {349--354}, publisher = {Elsevier}, volume = {350}, number = {7-8}, year = {2012}, doi = {10.1016/j.crma.2012.04.010}, language = {en}, }
Fedor Nazarov; Vladimir Peller. Functions of perturbed tuples of self-adjoint operators. Comptes Rendus. Mathématique, Volume 350 (2012) no. 7-8, pp. 349-354. doi : 10.1016/j.crma.2012.04.010. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.04.010/
[1] Functions of perturbed operators, C. R. Acad. Sci. Paris, Ser. I, Volume 347 (2009), pp. 483-488
[2] Operator Hölder–Zygmund functions, Adv. Math., Volume 224 (2010), pp. 910-966
[3] Functions of operators under perturbations of class , J. Funct. Anal., Volume 258 (2010), pp. 3675-3724
[4] Functions of perturbed unbounded self-adjoint operators. Operator Bernstein type inequalities, Indiana Univ. Math. J., Volume 59 (2010) no. 4, pp. 1451-1490
[5] Functions of perturbed normal operators, C. R. Acad. Sci. Paris, Ser I, Volume 348 (2010), pp. 553-558
[6] Functions of normal operators under perturbations, Adv. Math., Volume 226 (2011), pp. 5216-5251
[7] Double Stieltjes operator integrals, Problems of Math. Phys., vol. 1, Leningrad. Univ., New York, 1966, pp. 33-67 (in Russian); English transl.:, Top. Math. Phys., vol. 1, 1967, Consultants Bureau Plenum Publishing Corporation, pp. 25-54
[8] Double Stieltjes operator integrals. II, Problems of Math. Phys., vol. 2, Leningrad. Univ., New York, 1967, pp. 26-60 (in Russian); English transl.:, Top. Math. Phys., vol. 2, 1968, Consultants Bureau Plenum Publishing Corporation, pp. 19-46
[9] Double Stieltjes operator integrals. III, Problems of Math. Phys., vol. 6, Leningrad. Univ., 1973, pp. 27-53 (in Russian)
[10] The connection of the Kantorovich–Rubinshtein metric for spectral resolutions of selfadjoint operators with functions of operators, Vestn. Leningr. Univ., Volume 19 (1968), pp. 94-97 (in Russian)
[11] E. Kissin, V.S. Shulman, Operator smoothness in Schatten norms for functions of several variables: Lipschitz conditions, differentiability and unbounded derivations, in press.
[12] New Thoughts on Besov Spaces, Duke Univ. Press, Durham, NC, 1976
[13] Hankel operators in the theory of perturbations of unitary and self-adjoint operators, Funktsional. Anal. i Prilozhen., Volume 19 (1985) no. 2, pp. 37-51 (in Russian); English transl.: Funct. Anal. Appl., 19, 1985, pp. 111-123
[14] Hankel operators in the perturbation theory of unbounded self-adjoint operators, Analysis and Partial Differential Equations, Lect. Notes Pure Appl. Math., vol. 122, Dekker, New York, 1990, pp. 529-544
Cité par Sources :
Commentaires - Politique