Comptes Rendus
Article de recherche - Géométrie algébrique
Hodge–Lyubeznik numbers
[Nombres de Hodge–Lyubeznik]
Comptes Rendus. Mathématique, Volume 363 (2025), pp. 213-221.

Nous définissons un raffinement en théorie de Hodge des nombres de Lyubeznik pour les anneaux locaux de variétés algébriques complexes. Nous prouvons que ces nombres sont indépendants des choix faits dans leur définition et que, pour l’anneau local d’une singularité isolée, ils peuvent être exprimés en termes de nombres de Hodge de la cohomologie de l’entrelac de la singularité. Nous donnons des exemples de singularités isolées ayant les mêmes nombres de Lyubeznik mais des nombres de Hodge–Lyubeznik différents.

We define a Hodge-theoretical refinement of the Lyubeznik numbers for local rings of complex algebraic varieties. We prove that these numbers are independent of the choices made in their definition and that, for the local ring of an isolated singularity, they can be expressed in terms of the Hodge numbers of the cohomology of the link of the singularity. We give examples of isolated singularities with the same Lyubeznik numbers but different Hodge–Lyubeznik numbers.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.724
Classification : 13D45, 14B15, 32S35
Keywords: Hodge numbers, Lyubeznik numbers, mixed Hodge modules
Mots-clés : Nombres de Hodge, nombres de Lyubeznik, modules de Hodge mixtes

Ricardo García López 1 ; Claude Sabbah 2

1 Departament de Matemàtiques i Informàtica, Universitat de Barcelona, Gran Vía, 585, E-08007 Barcelona, Spain
2 CMLS, CNRS, École polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau cedex, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2025__363_G2_213_0,
     author = {Ricardo Garc{\'\i}a L\'opez and Claude Sabbah},
     title = {Hodge{\textendash}Lyubeznik numbers},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {213--221},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {363},
     year = {2025},
     doi = {10.5802/crmath.724},
     language = {en},
}
TY  - JOUR
AU  - Ricardo García López
AU  - Claude Sabbah
TI  - Hodge–Lyubeznik numbers
JO  - Comptes Rendus. Mathématique
PY  - 2025
SP  - 213
EP  - 221
VL  - 363
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.724
LA  - en
ID  - CRMATH_2025__363_G2_213_0
ER  - 
%0 Journal Article
%A Ricardo García López
%A Claude Sabbah
%T Hodge–Lyubeznik numbers
%J Comptes Rendus. Mathématique
%D 2025
%P 213-221
%V 363
%I Académie des sciences, Paris
%R 10.5802/crmath.724
%G en
%F CRMATH_2025__363_G2_213_0
Ricardo García López; Claude Sabbah. Hodge–Lyubeznik numbers. Comptes Rendus. Mathématique, Volume 363 (2025), pp. 213-221. doi : 10.5802/crmath.724. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.724/

[1] Manuel Blickle; Raphael Bondu Local cohomology multiplicities in terms of étale cohomology, Ann. Inst. Fourier, Volume 55 (2005) no. 7, pp. 2239-2256 | DOI | Numdam | MR | Zbl

[2] Jean-Luc Brylinski; Masaki Kashiwara Kazhdan–Lusztig conjecture and holonomic systems, Invent. Math., Volume 64 (1981) no. 3, pp. 387-410 | DOI | MR | Zbl

[3] Pierre Deligne Théorie de Hodge. III, Publ. Math., Inst. Hautes Étud. Sci., Volume 44 (1974), pp. 5-77 | DOI | Numdam | MR | Zbl

[4] Ricardo García López; Claude Sabbah Topological computation of local cohomology multiplicities, Collect. Math., Volume 49 (1998) no. 2-3, pp. 317-324 | MR | Zbl

[5] Robin Hartshorne; Claudia Polini Simple 𝒟-module components of local cohomology modules, J. Algebra, Volume 571 (2021), pp. 232-257 | DOI | MR | Zbl

[6] Ryoshi Hotta; Kiyoshi Takeuchi; Toshiyuki Tanisaki 𝒟-modules, perverse sheaves, and representation theory, Progress in Mathematics, 236, Birkhäuser, 2008, xii+407 pages | DOI | MR

[7] Gennady Lyubeznik Finiteness properties of local cohomology modules (an application of D-modules to commutative algebra), Invent. Math., Volume 113 (1993) no. 1, pp. 41-55 | DOI | MR | Zbl

[8] Mircea Mustaţă; Mihnea Popa Hodge filtration on local cohomology, Du Bois complex and local cohomological dimension, Forum Math. Pi, Volume 10 (2022), e22, 58 pages | DOI | MR | Zbl

[9] Luis Núñez-Betancourt; Emily E. Witt; Wenliang Zhang A survey on the Lyubeznik numbers, Mexican mathematicians abroad: recent contributions (Contemporary Mathematics), Volume 657, American Mathematical Society, 2016, pp. 137-163 | DOI | Zbl

[10] Chris A. M. Peters; Joseph H. M. Steenbrink Mixed Hodge structures, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 52, Springer, 2008, xiv+470 pages | MR

[11] Thomas Reichelt; Morihiko Saito; Uli Walther Dependence of Lyubeznik numbers of cones of projective schemes on projective embeddings, Sel. Math., New Ser., Volume 27 (2021) no. 1, 6, 22 pages | DOI | MR | Zbl

[12] Morihiko Saito Modules de Hodge polarisables, Publ. Res. Inst. Math. Sci., Volume 24 (1988) no. 6, pp. 849-995 | DOI | MR | Zbl

[13] Morihiko Saito Mixed Hodge modules, Publ. Res. Inst. Math. Sci., Volume 26 (1990) no. 2, pp. 221-333 | DOI | MR | Zbl

[14] Morihiko Saito Mixed Hodge complexes on algebraic varieties, Math. Ann., Volume 316 (2000) no. 2, pp. 283-331 | DOI | MR | Zbl

[15] Christian Schnell An overview of Morihiko Saito’s theory of mixed Hodge modules, Representation theory, automorphic forms & complex geometry, International Press, 2019, pp. 27-80 | Zbl

[16] Vasudevan Srinivas On the embedding dimension of an affine variety, Math. Ann., Volume 289 (1991) no. 1, pp. 125-132 | DOI | MR | Zbl

[17] Joseph H. M. Steenbrink; Jan Stevens Topological invariance of the weight filtration, Indag. Math., New Ser., Volume 46 (1984) no. 1, pp. 63-76 | DOI | Zbl

[18] Botong Wang Lyubeznik numbers of irreducible projective varieties depend on the embedding, Proc. Am. Math. Soc., Volume 148 (2020) no. 5, pp. 2091-2096 | DOI | MR | Zbl

[19] Jianbo Wang; Zhiwang Yu; Yuyu Wang Examples of diffeomorphic complete intersections with different Hodge numbers, Topology Appl., Volume 339 (2023), 108690, 6 pages | DOI | MR | Zbl

[20] Wenliang Zhang Lyubeznik numbers of projective schemes, Adv. Math., Volume 228 (2011) no. 1, pp. 575-616 | DOI | MR | Zbl

Cité par Sources :

Commentaires - Politique