[Nombres de Hodge–Lyubeznik]
Nous définissons un raffinement en théorie de Hodge des nombres de Lyubeznik pour les anneaux locaux de variétés algébriques complexes. Nous prouvons que ces nombres sont indépendants des choix faits dans leur définition et que, pour l’anneau local d’une singularité isolée, ils peuvent être exprimés en termes de nombres de Hodge de la cohomologie de l’entrelac de la singularité. Nous donnons des exemples de singularités isolées ayant les mêmes nombres de Lyubeznik mais des nombres de Hodge–Lyubeznik différents.
We define a Hodge-theoretical refinement of the Lyubeznik numbers for local rings of complex algebraic varieties. We prove that these numbers are independent of the choices made in their definition and that, for the local ring of an isolated singularity, they can be expressed in terms of the Hodge numbers of the cohomology of the link of the singularity. We give examples of isolated singularities with the same Lyubeznik numbers but different Hodge–Lyubeznik numbers.
Révisé le :
Accepté le :
Publié le :
Keywords: Hodge numbers, Lyubeznik numbers, mixed Hodge modules
Mots-clés : Nombres de Hodge, nombres de Lyubeznik, modules de Hodge mixtes
Ricardo García López 1 ; Claude Sabbah 2

@article{CRMATH_2025__363_G2_213_0, author = {Ricardo Garc{\'\i}a L\'opez and Claude Sabbah}, title = {Hodge{\textendash}Lyubeznik numbers}, journal = {Comptes Rendus. Math\'ematique}, pages = {213--221}, publisher = {Acad\'emie des sciences, Paris}, volume = {363}, year = {2025}, doi = {10.5802/crmath.724}, language = {en}, }
Ricardo García López; Claude Sabbah. Hodge–Lyubeznik numbers. Comptes Rendus. Mathématique, Volume 363 (2025), pp. 213-221. doi : 10.5802/crmath.724. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.724/
[1] Local cohomology multiplicities in terms of étale cohomology, Ann. Inst. Fourier, Volume 55 (2005) no. 7, pp. 2239-2256 | DOI | Numdam | MR | Zbl
[2] Kazhdan–Lusztig conjecture and holonomic systems, Invent. Math., Volume 64 (1981) no. 3, pp. 387-410 | DOI | MR | Zbl
[3] Théorie de Hodge. III, Publ. Math., Inst. Hautes Étud. Sci., Volume 44 (1974), pp. 5-77 | DOI | Numdam | MR | Zbl
[4] Topological computation of local cohomology multiplicities, Collect. Math., Volume 49 (1998) no. 2-3, pp. 317-324 | MR | Zbl
[5] Simple
[6]
[7] Finiteness properties of local cohomology modules (an application of
[8] Hodge filtration on local cohomology, Du Bois complex and local cohomological dimension, Forum Math. Pi, Volume 10 (2022), e22, 58 pages | DOI | MR | Zbl
[9] A survey on the Lyubeznik numbers, Mexican mathematicians abroad: recent contributions (Contemporary Mathematics), Volume 657, American Mathematical Society, 2016, pp. 137-163 | DOI | Zbl
[10] Mixed Hodge structures, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 52, Springer, 2008, xiv+470 pages | MR
[11] Dependence of Lyubeznik numbers of cones of projective schemes on projective embeddings, Sel. Math., New Ser., Volume 27 (2021) no. 1, 6, 22 pages | DOI | MR | Zbl
[12] Modules de Hodge polarisables, Publ. Res. Inst. Math. Sci., Volume 24 (1988) no. 6, pp. 849-995 | DOI | MR | Zbl
[13] Mixed Hodge modules, Publ. Res. Inst. Math. Sci., Volume 26 (1990) no. 2, pp. 221-333 | DOI | MR | Zbl
[14] Mixed Hodge complexes on algebraic varieties, Math. Ann., Volume 316 (2000) no. 2, pp. 283-331 | DOI | MR | Zbl
[15] An overview of Morihiko Saito’s theory of mixed Hodge modules, Representation theory, automorphic forms & complex geometry, International Press, 2019, pp. 27-80 | Zbl
[16] On the embedding dimension of an affine variety, Math. Ann., Volume 289 (1991) no. 1, pp. 125-132 | DOI | MR | Zbl
[17] Topological invariance of the weight filtration, Indag. Math., New Ser., Volume 46 (1984) no. 1, pp. 63-76 | DOI | Zbl
[18] Lyubeznik numbers of irreducible projective varieties depend on the embedding, Proc. Am. Math. Soc., Volume 148 (2020) no. 5, pp. 2091-2096 | DOI | MR | Zbl
[19] Examples of diffeomorphic complete intersections with different Hodge numbers, Topology Appl., Volume 339 (2023), 108690, 6 pages | DOI | MR | Zbl
[20] Lyubeznik numbers of projective schemes, Adv. Math., Volume 228 (2011) no. 1, pp. 575-616 | DOI | MR | Zbl
Cité par Sources :
Commentaires - Politique