[À propos des semi-groupes contractants sur des jonctions 1 :1 pour des lois de conservation scalaires et des équations de Hamilton–Jacobi]
We characterize the continuous semi-groups on
Nous caractérisons les semi-groupes continus sur
Révisé le :
Accepté le :
Publié le :
Mots-clés : Lois de conservation scalaire, modèles de trafic, équations de Hamilton–Jacobi, limiteur de flux, flux discontinus
Pierre Cardaliaguet 1

@article{CRMATH_2025__363_G5_499_0, author = {Pierre Cardaliaguet}, title = {A note on contractive semi-groups on a 1:1 junction for scalar conservation laws and {Hamilton{\textendash}Jacobi} equations}, journal = {Comptes Rendus. Math\'ematique}, pages = {499--510}, publisher = {Acad\'emie des sciences, Paris}, volume = {363}, year = {2025}, doi = {10.5802/crmath.727}, language = {en}, }
TY - JOUR AU - Pierre Cardaliaguet TI - A note on contractive semi-groups on a 1:1 junction for scalar conservation laws and Hamilton–Jacobi equations JO - Comptes Rendus. Mathématique PY - 2025 SP - 499 EP - 510 VL - 363 PB - Académie des sciences, Paris DO - 10.5802/crmath.727 LA - en ID - CRMATH_2025__363_G5_499_0 ER -
%0 Journal Article %A Pierre Cardaliaguet %T A note on contractive semi-groups on a 1:1 junction for scalar conservation laws and Hamilton–Jacobi equations %J Comptes Rendus. Mathématique %D 2025 %P 499-510 %V 363 %I Académie des sciences, Paris %R 10.5802/crmath.727 %G en %F CRMATH_2025__363_G5_499_0
Pierre Cardaliaguet. A note on contractive semi-groups on a 1:1 junction for scalar conservation laws and Hamilton–Jacobi equations. Comptes Rendus. Mathématique, Volume 363 (2025), pp. 499-510. doi : 10.5802/crmath.727. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.727/
[1] Existence and nonexistence of TV bounds for scalar conservation laws with discontinuous flux, Commun. Pure Appl. Math., Volume 64 (2011) no. 1, pp. 84-115 | DOI | MR | Zbl
[2] A theory of
[3] Uniqueness for scalar conservation laws with discontinuous flux via adapted entropies, Proc. R. Soc. Edinb., Sect. A, Math., Volume 135 (2005) no. 2, pp. 253-265 | DOI | MR | Zbl
[4] Well-posedness for a class of
[5] An Engquist–Osher-type scheme for conservation laws with discontinuous flux adapted to flux connections, SIAM J. Numer. Anal., Volume 47 (2009) no. 3, pp. 1684-1712 | DOI | MR | Zbl
[6] Conservation law and Hamilton–Jacobi equations on a junction: the convex case (2024) | HAL
[7] A class of germs arising from homogenization in traffic flow on junctions (2023) (To appear in J. Hyperbolic Differ. Equ.) | arXiv
[8] Some relations between nonexpansive and order preserving mappings, Proc. Am. Math. Soc., Volume 78 (1980) no. 3, pp. 385-390 | DOI | MR | Zbl
[9] Germs for scalar conservation laws: the Hamilton–Jacobi equation point of view (2024) | arXiv
[10] Conservation laws with discontinuous flux, Netw. Heterog. Media, Volume 2 (2007) no. 1, pp. 159-179 | DOI | MR | Zbl
[11] Flux-limited solutions for quasi-convex Hamilton–Jacobi equations on networks, Ann. Sci. Éc. Norm. Supér. (4), Volume 50 (2017) no. 2, pp. 357-448 | DOI | Numdam | MR | Zbl
[12] Strictly convex Hamilton–Jacobi equations: strong trace of the gradient (2023) | HAL
[13] Existence of strong traces for quasi-solutions of multidimensional conservation laws, J. Hyperbolic Differ. Equ., Volume 4 (2007) no. 4, pp. 729-770 | DOI | MR | Zbl
[14] Convergence of a difference scheme for conservation laws with a discontinuous flux, SIAM J. Numer. Anal., Volume 38 (2000) no. 2, pp. 681-698 | DOI | MR | Zbl
[15] A difference scheme for conservation laws with a discontinuous flux: the nonconvex case, SIAM J. Numer. Anal., Volume 39 (2001) no. 4, pp. 1197-1218 | DOI | MR | Zbl
[16] Strong traces for solutions of multidimensional scalar conservation laws, Arch. Ration. Mech. Anal., Volume 160 (2001) no. 3, pp. 181-193 | DOI | MR | Zbl
Cité par Sources :
Commentaires - Politique