[Régularité du hessien dans les espaces de Hölder pour une équation bi-laplacienne semi-linéaire]
We examine a semi-linear variant of the bi-Laplacian equation in the superlinear, subquadratic setting and obtain
Nous examinons une variante semi-linéaire de l’équation bi-laplacienne dans un cadre superlinéaire et subquadratique, et obtenons des estimations de régularité
Accepté le :
Publié le :
Keywords: Bi-Laplacian operator, semi-linear equations, Hessian regularity, Hölder spaces
Mots-clés : Opérateur bi-laplacien, équations semi-linéaires, régularité hessienne, espaces de Hölder
Claudemir Alcantara 1 ; Edgard Pimentel 2 ; José Miguel Urbano 2, 3

@article{CRMATH_2025__363_G5_533_0, author = {Claudemir Alcantara and Edgard Pimentel and Jos\'e Miguel Urbano}, title = {Hessian regularity in {H\"older} spaces for a semi-linear {bi-Laplacian} equation}, journal = {Comptes Rendus. Math\'ematique}, pages = {533--539}, publisher = {Acad\'emie des sciences, Paris}, volume = {363}, year = {2025}, doi = {10.5802/crmath.737}, language = {en}, }
TY - JOUR AU - Claudemir Alcantara AU - Edgard Pimentel AU - José Miguel Urbano TI - Hessian regularity in Hölder spaces for a semi-linear bi-Laplacian equation JO - Comptes Rendus. Mathématique PY - 2025 SP - 533 EP - 539 VL - 363 PB - Académie des sciences, Paris DO - 10.5802/crmath.737 LA - en ID - CRMATH_2025__363_G5_533_0 ER -
%0 Journal Article %A Claudemir Alcantara %A Edgard Pimentel %A José Miguel Urbano %T Hessian regularity in Hölder spaces for a semi-linear bi-Laplacian equation %J Comptes Rendus. Mathématique %D 2025 %P 533-539 %V 363 %I Académie des sciences, Paris %R 10.5802/crmath.737 %G en %F CRMATH_2025__363_G5_533_0
Claudemir Alcantara; Edgard Pimentel; José Miguel Urbano. Hessian regularity in Hölder spaces for a semi-linear bi-Laplacian equation. Comptes Rendus. Mathématique, Volume 363 (2025), pp. 533-539. doi : 10.5802/crmath.737. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.737/
[1] The obstacle problem for the biharmonic operator, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (4), Volume 6 (1979) no. 1, pp. 151-184 | Numdam | MR | Zbl
[2] A two phase boundary obstacle-type problem for the bi-Laplacian, Nonlinear Anal., Theory Methods Appl., Volume 214 (2022), 112583, 26 pages | DOI | MR | Zbl
[3] Regularity of the solutions for nonlinear biharmonic equations in
[4] A short proof of local regularity of distributional solutions of Poisson’s equation, Proc. Am. Math. Soc., Volume 148 (2020) no. 5, pp. 2143-2148 | DOI | MR | Zbl
[5] Some new PDE methods for weak KAM theory, Calc. Var. Partial Differ. Equ., Volume 17 (2003) no. 2, pp. 159-177 | DOI | MR | Zbl
[6] Further PDE methods for weak KAM theory, Calc. Var. Partial Differ. Equ., Volume 35 (2009) no. 4, pp. 435-462 | DOI | MR | Zbl
[7] On the regularity of the solution of the biharmonic variational inequality, Manuscr. Math., Volume 9 (1973), pp. 91-103 | DOI | MR | Zbl
[8] Elliptic partial differential equations of second order, Classics in Mathematics, 224, Springer, 2001, xiii+517 pages | DOI | Zbl
[9] Regularity of solutions to the polyharmonic equation in general domains, Invent. Math., Volume 196 (2014) no. 1, pp. 1-68 | DOI | MR | Zbl
[10] Partial differential equations in mechanics 2. The biharmonic equation, Poisson’s equation, Springer, 2000, xviii+698 pages | MR
Cité par Sources :
Commentaires - Politique