Comptes Rendus
Article de recherche - Équations aux dérivées partielles
Hessian regularity in Hölder spaces for a semi-linear bi-Laplacian equation
[Régularité du hessien dans les espaces de Hölder pour une équation bi-laplacienne semi-linéaire]
Comptes Rendus. Mathématique, Volume 363 (2025), pp. 533-539.

We examine a semi-linear variant of the bi-Laplacian equation in the superlinear, subquadratic setting and obtain C2,σ-regularity estimates, depending on the growth regime of the nonlinearity. Our strategy is to render this fourth-order problem as a system of two Poisson equations and explore the interplay between the integrability and smoothness available for each equation taken isolated.

Nous examinons une variante semi-linéaire de l’équation bi-laplacienne dans un cadre superlinéaire et subquadratique, et obtenons des estimations de régularité C2,σ dépendant du régime de croissance de la non-linéarité. Notre stratégie consiste à transformer le problème du quatrième ordre en un système de deux équations de Poisson, puis à explorer l’interaction entre l’intégrabilité et la régularité disponibles pour chaque équation prise isolément.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.737
Classification : 35B65, 35J91, 35G20
Keywords: Bi-Laplacian operator, semi-linear equations, Hessian regularity, Hölder spaces
Mots-clés : Opérateur bi-laplacien, équations semi-linéaires, régularité hessienne, espaces de Hölder

Claudemir Alcantara 1 ; Edgard Pimentel 2 ; José Miguel Urbano 2, 3

1 Department of Mathematics, Pontifical Catholic University of Rio de Janeiro (PUC-Rio), 22451-900 Rio de Janeiro, Brazil
2 CMUC, Department of Mathematics, University of Coimbra, 3000-143 Coimbra, Portugal
3 Applied Mathematics and Computational Sciences Program (AMCS), Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955 -6900, Kingdom of Saudi Arabia
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2025__363_G5_533_0,
     author = {Claudemir Alcantara and Edgard Pimentel and Jos\'e Miguel Urbano},
     title = {Hessian regularity in {H\"older} spaces for a semi-linear {bi-Laplacian} equation},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {533--539},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {363},
     year = {2025},
     doi = {10.5802/crmath.737},
     language = {en},
}
TY  - JOUR
AU  - Claudemir Alcantara
AU  - Edgard Pimentel
AU  - José Miguel Urbano
TI  - Hessian regularity in Hölder spaces for a semi-linear bi-Laplacian equation
JO  - Comptes Rendus. Mathématique
PY  - 2025
SP  - 533
EP  - 539
VL  - 363
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.737
LA  - en
ID  - CRMATH_2025__363_G5_533_0
ER  - 
%0 Journal Article
%A Claudemir Alcantara
%A Edgard Pimentel
%A José Miguel Urbano
%T Hessian regularity in Hölder spaces for a semi-linear bi-Laplacian equation
%J Comptes Rendus. Mathématique
%D 2025
%P 533-539
%V 363
%I Académie des sciences, Paris
%R 10.5802/crmath.737
%G en
%F CRMATH_2025__363_G5_533_0
Claudemir Alcantara; Edgard Pimentel; José Miguel Urbano. Hessian regularity in Hölder spaces for a semi-linear bi-Laplacian equation. Comptes Rendus. Mathématique, Volume 363 (2025), pp. 533-539. doi : 10.5802/crmath.737. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.737/

[1] Luis A. Caffarelli; Avner Friedman The obstacle problem for the biharmonic operator, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (4), Volume 6 (1979) no. 1, pp. 151-184 | Numdam | MR | Zbl

[2] Donatella Danielli; Alaa Haj Ali A two phase boundary obstacle-type problem for the bi-Laplacian, Nonlinear Anal., Theory Methods Appl., Volume 214 (2022), 112583, 26 pages | DOI | MR | Zbl

[3] Yinbin Deng; Yi Li Regularity of the solutions for nonlinear biharmonic equations in N, Acta Math. Sci., Ser. B, Engl. Ed., Volume 29 (2009) no. 5, pp. 1469-1480 | DOI | MR | Zbl

[4] Giovanni Di Fratta; Alberto Fiorenza A short proof of local regularity of distributional solutions of Poisson’s equation, Proc. Am. Math. Soc., Volume 148 (2020) no. 5, pp. 2143-2148 | DOI | MR | Zbl

[5] Lawrence C. Evans Some new PDE methods for weak KAM theory, Calc. Var. Partial Differ. Equ., Volume 17 (2003) no. 2, pp. 159-177 | DOI | MR | Zbl

[6] Lawrence C. Evans Further PDE methods for weak KAM theory, Calc. Var. Partial Differ. Equ., Volume 35 (2009) no. 4, pp. 435-462 | DOI | MR | Zbl

[7] Jens Frehse On the regularity of the solution of the biharmonic variational inequality, Manuscr. Math., Volume 9 (1973), pp. 91-103 | DOI | MR | Zbl

[8] David Gilbarg; Neil S. Trudinger Elliptic partial differential equations of second order, Classics in Mathematics, 224, Springer, 2001, xiii+517 pages | DOI | Zbl

[9] Svitlana Mayboroda; Vladimir Maz’ya Regularity of solutions to the polyharmonic equation in general domains, Invent. Math., Volume 196 (2014) no. 1, pp. 1-68 | DOI | MR | Zbl

[10] A. Patrick S. Selvadurai Partial differential equations in mechanics 2. The biharmonic equation, Poisson’s equation, Springer, 2000, xviii+698 pages | MR

Cité par Sources :

Commentaires - Politique