[Sur la conjecture de Berge–Füredi sur l’indice chromatique des hypergraphes]
Nous montrons que l’indice chromatique d’un hypergraphe satisfait la borne conjecturée indépendamment par Berge et Füredi,
We prove that the chromatic index of a hypergraph
Révisé le :
Accepté le :
Publié le :
Keywords: Hypergraphs, hyperedge coloring, chromatic index
Mots-clés : Hypergraphes, coloration des hyperarêtes, indice chromatique
Alain Bretto 1 ; Alain Faisant 2 ; François Hennecart 2

@article{CRMATH_2025__363_G3_323_0, author = {Alain Bretto and Alain Faisant and Fran\c{c}ois Hennecart}, title = {About {Berge{\textendash}F\"uredi{\textquoteright}s} conjecture on the chromatic index of hypergraphs}, journal = {Comptes Rendus. Math\'ematique}, pages = {323--328}, publisher = {Acad\'emie des sciences, Paris}, volume = {363}, year = {2025}, doi = {10.5802/crmath.739}, language = {en}, }
TY - JOUR AU - Alain Bretto AU - Alain Faisant AU - François Hennecart TI - About Berge–Füredi’s conjecture on the chromatic index of hypergraphs JO - Comptes Rendus. Mathématique PY - 2025 SP - 323 EP - 328 VL - 363 PB - Académie des sciences, Paris DO - 10.5802/crmath.739 LA - en ID - CRMATH_2025__363_G3_323_0 ER -
Alain Bretto; Alain Faisant; François Hennecart. About Berge–Füredi’s conjecture on the chromatic index of hypergraphs. Comptes Rendus. Mathématique, Volume 363 (2025), pp. 323-328. doi : 10.5802/crmath.739. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.739/
[1] On the chromatic index of a linear hypergraph and the Chvátal Conjecture, Ann. N.Y. Acad. Sci., Volume 555 (1989), pp. 40-44 | DOI | Zbl
[2] Motivations and history of some of my conjectures, Discrete Math., Volume 165-166 (1997), pp. 61-70 | DOI | MR | Zbl
[3] Elements of Graph Theory: From Basic Concepts to Modern Developments, EMS Textbooks in Mathematics, European Mathematical Society, 2022, xv+486 pages | DOI | MR | Zbl
[4] The Berge–Füredi Conjecture on the chromatic index of hypergraphs with large hyperedges (2024) | arXiv
[5] Chromatic index of hypergraphs and Shannon’s Theorem, Eur. J. Comb., Volume 21 (2000), pp. 585-591 | DOI | MR | Zbl
[6] The chromatic index of simple hypergraphs, Graphs Comb., Volume 2 (1986) no. 1, pp. 89-92 | DOI | MR | Zbl
[7] The Erdős–Faber–Lovász Conjecture for gap-restricted hypergraphs, Engineering, Volume 16 (2024), pp. 47-59 | DOI
[8] Chromatic index of simple hypergraphs, Discrete Math., Volume 343 (2020) no. 12, 112087, 7 pages | DOI | MR | Zbl
Cité par Sources :
Commentaires - Politique