Comptes Rendus
Statistiques
Robustifying multiple-set linear canonical analysis with S-estimator
[Robustification de l’analyse canonique linéaire généralisée avec un S-estimateur]
Comptes Rendus. Mathématique, Volume 358 (2020) no. 5, pp. 571-576.

Dans cet article, nous considérons une version robuste de l’analyse canonique linéaire généralisée obtenue en utilisant un S-estimateur de l’opérateur de covariance. Les fonctions d’influence correspondantes sont déterminées. Les propriétés asymptotiques de cette méthode robuste sont obtenues, et un test robuste de non-corrélation mutuelle est introduit.

In this paper, we consider a robust version of multiple-set linear canonical analysis obtained by using a S-estimator of covariance operator. The related influence functions are derived. Asymptotic properties of this robust method are obtained and a robust test for mutual non-correlation is introduced.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.74

Ulrich Djemby Bivigou 1 ; Guy Martial Nkiet 1

1 Université des Sciences et Techniques de Masuku, Franceville, Gabon
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2020__358_5_571_0,
     author = {Ulrich Djemby Bivigou and Guy Martial Nkiet},
     title = {Robustifying multiple-set linear canonical analysis with {S-estimator}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {571--576},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {358},
     number = {5},
     year = {2020},
     doi = {10.5802/crmath.74},
     language = {en},
}
TY  - JOUR
AU  - Ulrich Djemby Bivigou
AU  - Guy Martial Nkiet
TI  - Robustifying multiple-set linear canonical analysis with S-estimator
JO  - Comptes Rendus. Mathématique
PY  - 2020
SP  - 571
EP  - 576
VL  - 358
IS  - 5
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.74
LA  - en
ID  - CRMATH_2020__358_5_571_0
ER  - 
%0 Journal Article
%A Ulrich Djemby Bivigou
%A Guy Martial Nkiet
%T Robustifying multiple-set linear canonical analysis with S-estimator
%J Comptes Rendus. Mathématique
%D 2020
%P 571-576
%V 358
%N 5
%I Académie des sciences, Paris
%R 10.5802/crmath.74
%G en
%F CRMATH_2020__358_5_571_0
Ulrich Djemby Bivigou; Guy Martial Nkiet. Robustifying multiple-set linear canonical analysis with S-estimator. Comptes Rendus. Mathématique, Volume 358 (2020) no. 5, pp. 571-576. doi : 10.5802/crmath.74. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.74/

[1] Christophe Croux; Catherine Dehon nAalyse canonique basée sur des estimateurs robustes de la matrice des covariances, Rev. Stat. Appl., Volume 50 (2002), pp. 5-26

[2] Christophe Croux; Peter Filzmoser; Kristel Joossens Classification efficiencies for robust linear discriminant analysis, Stat. Sin., Volume 18 (2008) no. 2, pp. 581-599 | MR | Zbl

[3] Christophe Croux; Gentiane Haesbroeck Principal component analysis based on robust estimators of the covariance or correlation matrix: Influence function and efficiencies, Biometrika, Volume 87 (2000) no. 3, pp. 603-618 | DOI | MR | Zbl

[4] Patrick L. Davies Asymptotic behaviour of S-estimates of multivariate location and parameters and dispersion matrices, Ann. Stat., Volume 15 (1987), pp. 1269-1292 | DOI | MR | Zbl

[5] Sugnet Gardner; John C. Gower; Niël J. Le Roux A synthesis of canonical variate analysis, generalised canonical correlation and Procrustes analysis, Comput. Stat. Data Anal., Volume 50 (2006) no. 1, pp. 107-134 | DOI | MR | Zbl

[6] Albert Gifi Nonlinear multivariate analysis, Wiley Series in Probability and Mathematical Statistics, John Wiley & Sons, 1990 | MR | Zbl

[7] Frank R. Hampel; Elvezio M. Ronchetti; Peter J. Rousseeuw; Werner A. Stahel Robust Statistics: The Approach based on influence functions, Wiley Series in Probability and Mathematical Statistics, John Wiley & Sons, 1986 | Zbl

[8] Heungsun Hwang; Kwanghee Jung; Yoshio Takane; Todd S. Woodward Functional multiple-set canonical correlation analysis, Psychometrika, Volume 77 (2012), pp. 753-775 | MR | Zbl

[9] Hendrik P. Lopuhaä On the relation between S-estimator and M-estimator of multivariate location and covariance, Ann. Stat., Volume 17 (1989) no. 4, pp. 1662-1683 | DOI | MR | Zbl

[10] Hendrik P. Lopuhaä Asymptotic expansion of S-estimators of location and covariance, Stat. Neerl., Volume 51 (1997) no. 2, pp. 220-237 | DOI | MR | Zbl

[11] Guy M. Nkiet Asymptotic theory of multiple-set linear canonical analysis, Math. Methods Stat., Volume 26 (2017) no. 3, pp. 196-211 | DOI | MR | Zbl

[12] Yoshio Takane; Heungsun Hwang; Hervé Abdi Regularized multiple-set canonical correlation analysis, Psychometrika, Volume 73 (2008) no. 4, pp. 753-775 | DOI | MR | Zbl

[13] Sara Taskinen; Inge Koch; Hannu Oja Robustifying principal component analysis with spatial sign vectors, Stat. Probab. Lett., Volume 82 (2012) no. 4, pp. 765-774 | DOI | MR | Zbl

[14] Arthur Tenenhaus; Michel Tenenhaus Regularized generalized canonical correlation analysis, Psychometrika, Volume 76 (2011) no. 2, pp. 257-284 | DOI | MR | Zbl

Cité par Sources :

Commentaires - Politique